
IBM Tivoli Decision Support for z/OS
Version 1.8.2

Language Guide and Reference

SH19-6817-13

IBM





IBM Tivoli Decision Support for z/OS
Version 1.8.2

Language Guide and Reference

SH19-6817-13

IBM



Before using this information and the product it supports, read the information in “Notices” on page D-1.

Fourteenth Edition (March 2015)

This edition applies to version 1, release 8, modification level 2 of Tivoli Decision Support for z/OS (program
number 5698-B06) and to all subsequent releases and modifications until otherwise indicated in new editions.

© COPYRIGHT INTERNATIONAL BUSINESS MACHINES CORPORATION. ALL RIGHTS RESERVED. Note to
U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp. 1994, 2015



Contents

Figures . . . . . . . . . . . . . . . ix

Tables . . . . . . . . . . . . . . . xi

Preface . . . . . . . . . . . . . . xiii
Who should read this book . . . . . . . . . xiii
What this book contains . . . . . . . . . . xiii
Publications . . . . . . . . . . . . . . xiv

Tivoli Decision Support for z/OS library . . . xiv
Accessing terminology online . . . . . . . xv
Accessing publications online . . . . . . . xv

Accessibility . . . . . . . . . . . . . . xv
Tivoli technical training . . . . . . . . . . xvi
Support information . . . . . . . . . . . xvi
Conventions used in this book. . . . . . . . xvi

Typeface conventions . . . . . . . . . . xvi
Programming Interfaces Information . . . . . xvii
Changes in this edition . . . . . . . . . . xvii

Part 1. Log collector language guide

Chapter 1. Introduction to the log
collector. . . . . . . . . . . . . . 1-1
Collecting log data. . . . . . . . . . . . 1-1
Listing log data . . . . . . . . . . . . . 1-2
Maintaining data tables . . . . . . . . . . 1-2
Maintaining definitions . . . . . . . . . . 1-2

Ready-made definitions . . . . . . . . . 1-3
Summary of log collector statements . . . . . . 1-3

Chapter 2. How to use the log
collector language . . . . . . . . . 2-1
Defining a log . . . . . . . . . . . . . 2-3
Defining a record . . . . . . . . . . . . 2-3
Creating a data table . . . . . . . . . . . 2-3
Defining an update . . . . . . . . . . . 2-4

Understanding the GROUP BY clause . . . . 2-4
Understanding the SET clause . . . . . . . 2-5

Performing log collector statements . . . . . . 2-6
Verifying record definitions . . . . . . . . 2-8

Collecting log data. . . . . . . . . . . . 2-9
Collecting log data in batch . . . . . . . . 2-9
Collecting log data online . . . . . . . . 2-11

Chapter 3. Defining logs and records 3-1
Learning more about writing record definitions . . 3-1
Defining sections within a record . . . . . . . 3-3

Defining a record containing a section . . . . 3-3
Defining multiple record types. . . . . . . . 3-5

Defining the records . . . . . . . . . . 3-7
Changing log and record definitions . . . . . . 3-7

Using the DROP statement to delete a record
definition . . . . . . . . . . . . . . 3-8

Using the ALTER RECORD statement . . . . 3-8

Chapter 4. Updating, storing, and
managing data in tables . . . . . . . 4-1
Storing data from multiple sources in a single data
table . . . . . . . . . . . . . . . . 4-1

Creating the data table . . . . . . . . . 4-2
Writing the update definition . . . . . . . 4-2

Storing data in multiple data tables . . . . . . 4-4
Defining a cascaded update. . . . . . . . 4-5

Creating the summary data table . . . . . 4-5
Defining an update for the summary table 4-5

Managing data within tables . . . . . . . . 4-7
Deleting data . . . . . . . . . . . . 4-7
Changing data within tables . . . . . . . 4-8

Correcting data . . . . . . . . . . . 4-8
Deleting and adding rows . . . . . . . 4-9

Chapter 5. Defining update definitions 5-1
Using repeated sections within records . . . . . 5-2

Defining a record with a repeated section . . . 5-3
Defining updates for records with repeated
sections . . . . . . . . . . . . . . 5-3

Accessing data from the record stem. . . . 5-4
Accessing data from repeated sections . . . 5-5

Using nested sections within records. . . . . . 5-6
Defining a record with nested sections . . . . 5-9
Accessing data in nested sections . . . . . 5-10

Understanding how to access data from records
with sections . . . . . . . . . . . . . 5-10

Obtaining a section occurrence number . . . 5-13
Accessing specific sections in a record . . . . 5-14

Determining averages . . . . . . . . . . 5-14
Determining percentiles. . . . . . . . . . 5-15
Distributing measurements . . . . . . . . 5-16
Determining resource availability . . . . . . 5-18

Understanding the MERGE clause . . . . . 5-23
Comparing actual availability to scheduled
availability . . . . . . . . . . . . . 5-24

Understanding the APPLY SCHEDULE
clause. . . . . . . . . . . . . . 5-25

Changing and deleting update definitions . . . 5-27
Using the DROP statement to delete an update
definition . . . . . . . . . . . . . 5-27
Using the ALTER UPDATE statement . . . . 5-28

Chapter 6. Collecting log data . . . . 6-1
Controlling data collection . . . . . . . . . 6-1

Limiting the collection to certain records . . . 6-1
Including and excluding data tables . . . . . 6-2

Including or excluding groups of tables. . . 6-2
Controlling when a COMMIT is made . . . . 6-3
Controlling buffer size . . . . . . . . . 6-3
Handling table row overflows . . . . . . . 6-3

Collecting data more than once . . . . . . . 6-4

iii



Collecting data from partially processed logs . . 6-4
Verifying log data sets during data collection . . . 6-4

Part 2. Log collector language
reference

Chapter 7. How to read the syntax
diagrams . . . . . . . . . . . . . 7-1

Chapter 8. Elements of the log
collector language . . . . . . . . . 8-1
Characters . . . . . . . . . . . . . . 8-1
Tokens . . . . . . . . . . . . . . . . 8-1

Words . . . . . . . . . . . . . . . 8-1
Examples . . . . . . . . . . . . . 8-1

Delimited words . . . . . . . . . . . 8-2
Examples . . . . . . . . . . . . . 8-2

String constants. . . . . . . . . . . . 8-2
Examples . . . . . . . . . . . . . 8-2

Integer constants . . . . . . . . . . . 8-2
Examples . . . . . . . . . . . . . 8-2

Floating-point constants . . . . . . . . . 8-3
Examples . . . . . . . . . . . . . 8-3

Delimiters . . . . . . . . . . . . . 8-3
Input lines . . . . . . . . . . . . . . 8-3

Example . . . . . . . . . . . . . . 8-3
Blanks . . . . . . . . . . . . . . . . 8-4
Comments . . . . . . . . . . . . . . 8-4

Line comments . . . . . . . . . . . . 8-4
Examples . . . . . . . . . . . . . 8-4

Block comments . . . . . . . . . . . 8-4
Example . . . . . . . . . . . . . 8-4

How your text is processed . . . . . . . . . 8-5
Example . . . . . . . . . . . . . . 8-5

Identifiers. . . . . . . . . . . . . . . 8-6
Table names . . . . . . . . . . . . . . 8-6

Example . . . . . . . . . . . . . . 8-6
Statements . . . . . . . . . . . . . . 8-7
Using variables to modify your text . . . . . . 8-7

Chapter 9. Values and expressions . . 9-1
Data types . . . . . . . . . . . . . . 9-1

Integers . . . . . . . . . . . . . . 9-1
Floating-point numbers . . . . . . . . . 9-1
Character strings . . . . . . . . . . . 9-2
Dates . . . . . . . . . . . . . . . 9-2
Times . . . . . . . . . . . . . . . 9-2
Timestamps . . . . . . . . . . . . . 9-2
Truth values . . . . . . . . . . . . . 9-2

Missing and invalid data . . . . . . . . . 9-2
Null value . . . . . . . . . . . . . 9-2
Unknown truth value . . . . . . . . . . 9-3
Error handling . . . . . . . . . . . . 9-3

Some simple ways of specifying a value . . . . 9-3
Specifying a value explicitly . . . . . . . 9-4
Specifying a value using an identifier . . . . 9-4
Obtaining the value of a variable . . . . . . 9-4
Obtaining the current date and time . . . . . 9-5
Obtaining the user ID. . . . . . . . . . 9-5

Date/time strings . . . . . . . . . . . . 9-6
DATE function . . . . . . . . . . . . 9-6
Automatic conversions . . . . . . . . . 9-6

Labeled durations . . . . . . . . . . . . 9-7
Examples . . . . . . . . . . . . . . 9-7

Using operators. . . . . . . . . . . . . 9-8
Arithmetic operations. . . . . . . . . . 9-8

Examples . . . . . . . . . . . . . 9-8
Examples . . . . . . . . . . . . . 9-8

Incrementing and decrementing date/time
values . . . . . . . . . . . . . . . 9-9

Examples . . . . . . . . . . . . . 9-9
Concatenation of strings . . . . . . . . 9-10

Example . . . . . . . . . . . . . 9-10
Comparisons . . . . . . . . . . . . 9-10

Examples . . . . . . . . . . . . 9-10
Pattern matching . . . . . . . . . . . 9-11

Examples . . . . . . . . . . . . 9-11
Examples . . . . . . . . . . . . 9-11

Logical operations . . . . . . . . . . 9-12
Testing for null . . . . . . . . . . . . 9-12

Examples . . . . . . . . . . . . . 9-12
Case expressions . . . . . . . . . . . . 9-13

Examples . . . . . . . . . . . . . 9-14
Lookup expressions . . . . . . . . . . . 9-14

How the result is obtained. . . . . . . . 9-15
Which is the most specific pattern . . . . . 9-15

Example A . . . . . . . . . . . . 9-16
Example B . . . . . . . . . . . . 9-16

Important . . . . . . . . . . . . . 9-17
Expressions . . . . . . . . . . . . . . 9-17

Precedence of operators. . . . . . . . . 9-18
Conditions . . . . . . . . . . . . . . 9-18

Precedence of operators. . . . . . . . . 9-19

Chapter 10. Functions . . . . . . . 10-1
CHAR . . . . . . . . . . . . . . . 10-1

Syntax . . . . . . . . . . . . . . 10-1
Result . . . . . . . . . . . . . . 10-1
Example . . . . . . . . . . . . . . 10-1

DATE. . . . . . . . . . . . . . . . 10-1
Syntax . . . . . . . . . . . . . . 10-2
Result . . . . . . . . . . . . . . 10-2
Example . . . . . . . . . . . . . . 10-2

DAY . . . . . . . . . . . . . . . . 10-2
Syntax . . . . . . . . . . . . . . 10-2
Result . . . . . . . . . . . . . . 10-2
Example . . . . . . . . . . . . . . 10-2

DAYS. . . . . . . . . . . . . . . . 10-3
Syntax . . . . . . . . . . . . . . 10-3
Result . . . . . . . . . . . . . . 10-3
Example . . . . . . . . . . . . . . 10-3
Usage notes . . . . . . . . . . . . 10-3

DAYTYPE . . . . . . . . . . . . . . 10-3
Syntax . . . . . . . . . . . . . . 10-4
Result . . . . . . . . . . . . . . 10-4
Example . . . . . . . . . . . . . . 10-5

DIGITS . . . . . . . . . . . . . . . 10-5
Syntax . . . . . . . . . . . . . . 10-5
Result . . . . . . . . . . . . . . 10-5
Example . . . . . . . . . . . . . . 10-5

iv Tivoli Decision Support for z/OS: Language Guide and Reference



FIELD . . . . . . . . . . . . . . . 10-5
Syntax . . . . . . . . . . . . . . 10-5
Result . . . . . . . . . . . . . . 10-6
Example . . . . . . . . . . . . . . 10-6

FLOAT . . . . . . . . . . . . . . . 10-6
Syntax . . . . . . . . . . . . . . 10-6
Result . . . . . . . . . . . . . . 10-7
Example . . . . . . . . . . . . . . 10-7

GETVAR. . . . . . . . . . . . . . . 10-7
Syntax . . . . . . . . . . . . . . 10-7
Result . . . . . . . . . . . . . . 10-7
Example . . . . . . . . . . . . . . 10-7

HOUR . . . . . . . . . . . . . . . 10-7
Syntax . . . . . . . . . . . . . . 10-7
Result . . . . . . . . . . . . . . 10-7
Example . . . . . . . . . . . . . . 10-8

INTEGER . . . . . . . . . . . . . . 10-8
Syntax . . . . . . . . . . . . . . 10-8
Result . . . . . . . . . . . . . . 10-8
Example . . . . . . . . . . . . . . 10-8

INTERVAL . . . . . . . . . . . . . . 10-8
Syntax . . . . . . . . . . . . . . 10-8
Result . . . . . . . . . . . . . . 10-8
Example . . . . . . . . . . . . . . 10-9

IPCONV. . . . . . . . . . . . . . . 10-9
Syntax . . . . . . . . . . . . . . 10-9
Result . . . . . . . . . . . . . . 10-9
Example . . . . . . . . . . . . . . 10-9

LENGTH . . . . . . . . . . . . . . 10-10
Syntax . . . . . . . . . . . . . . 10-10
Result . . . . . . . . . . . . . . 10-10
Example . . . . . . . . . . . . . 10-10

MICROSECOND . . . . . . . . . . . 10-10
Syntax . . . . . . . . . . . . . . 10-10
Result . . . . . . . . . . . . . . 10-10
Example . . . . . . . . . . . . . 10-10

MINUTE . . . . . . . . . . . . . . 10-11
Syntax . . . . . . . . . . . . . . 10-11
Result . . . . . . . . . . . . . . 10-11
Example . . . . . . . . . . . . . 10-11

MONTH . . . . . . . . . . . . . . 10-11
Syntax . . . . . . . . . . . . . . 10-11
Result . . . . . . . . . . . . . . 10-11
Example . . . . . . . . . . . . . 10-11

PERIOD . . . . . . . . . . . . . . 10-12
Syntax . . . . . . . . . . . . . . 10-12
Result . . . . . . . . . . . . . . 10-13
Example . . . . . . . . . . . . . 10-13

ROUND . . . . . . . . . . . . . . 10-14
Syntax . . . . . . . . . . . . . . 10-14
Result . . . . . . . . . . . . . . 10-14
Example . . . . . . . . . . . . . 10-14
Usage notes . . . . . . . . . . . . 10-15

SECOND . . . . . . . . . . . . . . 10-15
Syntax . . . . . . . . . . . . . . 10-15
Result . . . . . . . . . . . . . . 10-15
Example . . . . . . . . . . . . . 10-15

SECTNUM . . . . . . . . . . . . . 10-15
Syntax . . . . . . . . . . . . . . 10-15
Result . . . . . . . . . . . . . . 10-16
Example . . . . . . . . . . . . . 10-16

SUBSTR . . . . . . . . . . . . . . 10-16
Syntax . . . . . . . . . . . . . . 10-16
Result . . . . . . . . . . . . . . 10-16
Example . . . . . . . . . . . . . 10-17

TIME . . . . . . . . . . . . . . . 10-17
Syntax . . . . . . . . . . . . . . 10-17
Result . . . . . . . . . . . . . . 10-17
Example . . . . . . . . . . . . . 10-17

TIMESTAMP . . . . . . . . . . . . . 10-17
Syntax . . . . . . . . . . . . . . 10-17
Result . . . . . . . . . . . . . . 10-18

If only one argument is specified . . . . 10-18
If both arguments are specified . . . . . 10-18

Example . . . . . . . . . . . . . 10-18
TRANSLATE . . . . . . . . . . . . . 10-18

Syntax . . . . . . . . . . . . . . 10-18
Result . . . . . . . . . . . . . . 10-19
Example . . . . . . . . . . . . . 10-19

VALUE . . . . . . . . . . . . . . . 10-19
Syntax . . . . . . . . . . . . . . 10-19
Result . . . . . . . . . . . . . . 10-19
Example . . . . . . . . . . . . . 10-19

WORD . . . . . . . . . . . . . . . 10-20
Syntax . . . . . . . . . . . . . . 10-20
Result . . . . . . . . . . . . . . 10-20
Example . . . . . . . . . . . . . 10-20

YEAR . . . . . . . . . . . . . . . 10-20
Syntax . . . . . . . . . . . . . . 10-20
Result . . . . . . . . . . . . . . 10-20
Example . . . . . . . . . . . . . 10-21

Chapter 11. Log collector language
statements . . . . . . . . . . . . 11-1
ALTER LOG . . . . . . . . . . . . . 11-1

Syntax . . . . . . . . . . . . . . 11-1
Parameters . . . . . . . . . . . . . 11-2
Examples . . . . . . . . . . . . . 11-3
Usage. . . . . . . . . . . . . . . 11-3

ALTER RECORD . . . . . . . . . . . . 11-3
Syntax . . . . . . . . . . . . . . 11-3
Parameters . . . . . . . . . . . . . 11-4
Examples . . . . . . . . . . . . . 11-5
Usage. . . . . . . . . . . . . . . 11-6

ALTER RECORDPROC . . . . . . . . . . 11-6
Syntax . . . . . . . . . . . . . . 11-6
Parameters . . . . . . . . . . . . . 11-6
Examples . . . . . . . . . . . . . 11-7
Usage. . . . . . . . . . . . . . . 11-7

ALTER UPDATE . . . . . . . . . . . . 11-7
Syntax . . . . . . . . . . . . . . 11-7
Parameters . . . . . . . . . . . . . 11-8
Examples . . . . . . . . . . . . . 11-9
Usage. . . . . . . . . . . . . . . 11-9

COLLECT . . . . . . . . . . . . . . 11-10
Syntax . . . . . . . . . . . . . . 11-10
Parameters . . . . . . . . . . . . 11-10
Examples . . . . . . . . . . . . . 11-14
Usage . . . . . . . . . . . . . . 11-14

COMMENT ON . . . . . . . . . . . . 11-14
Syntax . . . . . . . . . . . . . . 11-14
Parameters . . . . . . . . . . . . 11-14

Contents v



Examples . . . . . . . . . . . . . 11-15
Usage . . . . . . . . . . . . . . 11-15

DEFINE LOG. . . . . . . . . . . . . 11-15
Syntax . . . . . . . . . . . . . . 11-15
Parameters . . . . . . . . . . . . 11-16
Examples . . . . . . . . . . . . . 11-18

DEFINE PURGE . . . . . . . . . . . . 11-18
Syntax . . . . . . . . . . . . . . 11-18
Parameters . . . . . . . . . . . . 11-19
Examples . . . . . . . . . . . . . 11-19
Usage . . . . . . . . . . . . . . 11-19

DEFINE RECORD . . . . . . . . . . . 11-19
Syntax . . . . . . . . . . . . . . 11-20
Parameters . . . . . . . . . . . . 11-20
Examples . . . . . . . . . . . . . 11-27
Usage . . . . . . . . . . . . . . 11-27

DEFINE RECORDPROC . . . . . . . . . 11-28
Syntax . . . . . . . . . . . . . . 11-28
Parameters . . . . . . . . . . . . 11-28
Examples . . . . . . . . . . . . . 11-29

DEFINE UPDATE . . . . . . . . . . . 11-29
Syntax . . . . . . . . . . . . . . 11-29
Parameters . . . . . . . . . . . . 11-30
Examples . . . . . . . . . . . . . 11-31
APPLY SCHEDULE clause . . . . . . . 11-31
DISTRIBUTE clause. . . . . . . . . . 11-32
LET clause. . . . . . . . . . . . . 11-33
GROUP BY clause . . . . . . . . . . 11-33
SET clause . . . . . . . . . . . . . 11-34
MERGE clause . . . . . . . . . . . 11-36
How data is obtained from DB2 tables . . . 11-37
How data is stored in DB2 tables . . . . . 11-37

DROP . . . . . . . . . . . . . . . 11-38
Syntax . . . . . . . . . . . . . . 11-38
Parameters . . . . . . . . . . . . 11-38
Examples . . . . . . . . . . . . . 11-38

GENERATE INDEX. . . . . . . . . . . 11-39
Syntax . . . . . . . . . . . . . . 11-39
Parameters . . . . . . . . . . . . 11-39
Example . . . . . . . . . . . . . 11-39

GENERATE PARTITIONING . . . . . . . 11-39
Syntax . . . . . . . . . . . . . . 11-40
Parameters . . . . . . . . . . . . 11-40
Example . . . . . . . . . . . . . 11-40

GENERATE TABLESPACE . . . . . . . . 11-40
Syntax . . . . . . . . . . . . . . 11-40
Parameters . . . . . . . . . . . . 11-41
Example . . . . . . . . . . . . . 11-41

LIST RECORD . . . . . . . . . . . . 11-41
Syntax . . . . . . . . . . . . . . 11-41
Parameters . . . . . . . . . . . . 11-43
Examples . . . . . . . . . . . . . 11-45

LOGSTAT . . . . . . . . . . . . . . 11-46
Syntax . . . . . . . . . . . . . . 11-46
Parameters . . . . . . . . . . . . 11-46
Example . . . . . . . . . . . . . 11-46

PURGE . . . . . . . . . . . . . . . 11-47
Syntax . . . . . . . . . . . . . . 11-47
Parameters . . . . . . . . . . . . 11-47
Example . . . . . . . . . . . . . 11-48
Usage . . . . . . . . . . . . . . 11-48

RECALCULATE . . . . . . . . . . . . 11-48
Syntax . . . . . . . . . . . . . . 11-49
Parameters . . . . . . . . . . . . 11-50
Example . . . . . . . . . . . . . 11-52
Usage . . . . . . . . . . . . . . 11-52

SET . . . . . . . . . . . . . . . . 11-53
Syntax . . . . . . . . . . . . . . 11-53
Parameters . . . . . . . . . . . . 11-53
Examples . . . . . . . . . . . . . 11-53
Usage . . . . . . . . . . . . . . 11-53

Part 3. Report definition language
guide

Chapter 12. Introducing the report
definition language . . . . . . . . 12-1

Chapter 13. Implementing the report
definition language . . . . . . . . 13-1
Getting started with the report definition language 13-1

Creating a QMF query and form. . . . . . 13-2
Writing a group definition . . . . . . . . . 13-3
Writing a report definition . . . . . . . . . 13-3

Writing a definition for a tabular report . . . 13-3
Writing a definition for a graphic report . . . 13-4

Storing report definitions . . . . . . . . . 13-4
Storing definitions in batch . . . . . . . 13-4

Generating reports . . . . . . . . . . . 13-5

Part 4. Report definition language
reference

Chapter 14. Report definition
language elements. . . . . . . . . 14-1
Input format . . . . . . . . . . . . . 14-1
Identifiers . . . . . . . . . . . . . . 14-1

Comments . . . . . . . . . . . . . 14-1
Character string constants . . . . . . . . . 14-2

Chapter 15. Report definition
language statements . . . . . . . . 15-1
DEFINE GROUP . . . . . . . . . . . . 15-1
DEFINE REPORT. . . . . . . . . . . . 15-2
DROP GROUP. . . . . . . . . . . . . 15-5
DROP REPORT . . . . . . . . . . . . 15-6

Part 5. Appendixes

Appendix A. Log and record
procedures . . . . . . . . . . . . A-1
Specifying log and record procedures . . . . . A-2
Calling log and record procedures . . . . . . A-2
Calling assembler procedures . . . . . . . . A-3

Using LANGUAGE ASM interface . . . . . A-4
Using LANGUAGE ASML interface . . . . . A-5

Calling C procedures . . . . . . . . . . . A-5
Using LANGUAGE C interface . . . . . . A-6

vi Tivoli Decision Support for z/OS: Language Guide and Reference



Example log procedures. . . . . . . . . . A-8
Example C log procedure . . . . . . . . A-9
Example Assembler log procedure . . . . . A-12

Appendix B. JCL for the log collector
language and report definition
language . . . . . . . . . . . . . B-1
JCL for the log collector language . . . . . . B-1
JCL for the report definition language . . . . . B-2

Reporting definition language exec . . . . . B-3

Appendix C. Support information . . . C-1
Searching knowledge bases. . . . . . . . . C-1

Searching the information center . . . . . . C-1
Searching the Internet . . . . . . . . . C-1

Obtaining fixes . . . . . . . . . . . . . C-1

Receiving weekly support updates . . . . . . C-2
Contacting IBM Software Support . . . . . . C-2

Determining the business impact . . . . . . C-3
Describing problems and gathering information C-4
Submitting problems . . . . . . . . . . C-4

Notices . . . . . . . . . . . . . . D-1
Trademarks . . . . . . . . . . . . . . D-3

Glossary . . . . . . . . . . . . . E-1

Bibliography . . . . . . . . . . . . F-1
TDS publications . . . . . . . . . . . . F-1

Index . . . . . . . . . . . . . . . X-1

Contents vii



viii Tivoli Decision Support for z/OS: Language Guide and Reference



Figures

2-1. DEFINE LOG statement . . . . . . . 2-3
2-2. DEFINE RECORD statement . . . . . . 2-3
2-3. Creating a DB2 data table . . . . . . . 2-4
2-4. DEFINE UPDATE statement . . . . . . 2-4
2-5. Example of GROUP BY and SET processing 2-6
2-6. Contents of STATSDEF data set . . . . . 2-7
2-7. JCL for storing log and record definitions 2-7
2-8. LIST RECORD statement . . . . . . . 2-8
2-9. JCL for listing records . . . . . . . . 2-8
2-10. Messages resulting from LIST RECORD

statement execution . . . . . . . . . 2-9
2-11. Records listed by the LIST RECORD

statement . . . . . . . . . . . . 2-9
2-12. JCL used to collect log data . . . . . . 2-10
2-13. Messages resulting from COLLECT

statement execution . . . . . . . . 2-10
3-1. Record definition for R_REC record type 3-1
3-2. Defining the R_REC using defaults 3-2
3-3. Structure of the SUB_REC record and

SUB_1 section . . . . . . . . . . . 3-4
3-4. Defining a record with a section. . . . . 3-4
3-5. Contents of RWINFO.LOG data set. 3-6
3-6. Defining multiple records . . . . . . . 3-7
3-7. Using the DROP statement to redefine a

record . . . . . . . . . . . . . 3-8
3-8. Sample record definition . . . . . . . 3-9
3-9. Changing a record definition . . . . . . 3-9
4-1. Definitions used in RWINFO.LOG 4-1
4-2. Creating the DRL.STATS_H data table 4-2
4-3. Creating multiple update definitions for a

single data table . . . . . . . . . . 4-3
4-4. Processing two update definitions. 4-4
4-5. Creating a summary data table . . . . . 4-5
4-6. Updating a data table using information

from another data table . . . . . . . 4-5
4-7. Cascaded update process . . . . . . . 4-6
4-8. Messages resulting from data collection for

cascaded update . . . . . . . . . . 4-7
4-9. Using the DEFINE PURGE statement 4-8
4-10. Using the PURGE statement . . . . . . 4-8
4-11. Using the PURGE statement . . . . . . 4-8
4-12. Using the RECALCULATE statement 4-9
4-13. Deleting a row from a data table . . . . 4-9
4-14. Inserting a row into a data table 4-10
5-1. Calculating averages . . . . . . . . 5-1
5-2. A record containing a repeated section 5-2
5-3. Defining a record with a repeated section 5-3
5-4. DEFINE UPDATE statement to access data

in the record stem . . . . . . . . . 5-4
5-5. DEFINE UPDATE statement to access data

in a repeated section . . . . . . . . 5-5
5-6. Example of records containing nested

records . . . . . . . . . . . . . 5-8
5-7. Defining a record with nested sections 5-9
5-8. DEFINE UPDATE statement to access

nested sections in a record . . . . . . 5-10

5-9. Example of a record with different kinds of
sections . . . . . . . . . . . . 5-11

5-10. Data available for collection, depending on
SECTION clause . . . . . . . . . 5-12

5-11. Tree structure of a record with repeated
sections . . . . . . . . . . . . 5-13

5-12. Result of SECTNUM for different internal
records . . . . . . . . . . . . . 5-13

5-13. Calculating the 95th percentile . . . . . 5-16
5-14. Creating an update definition for

measurement distribution . . . . . . 5-17
5-15. Splitting the interval at one-hour

boundaries . . . . . . . . . . . 5-17
5-16. Log file containing RES_DATA records 5-20
5-17. Availability of DBSERV1 between 00.00

and 24.00 on June 23, 1999 . . . . . . 5-21
5-18. Using the MERGE clause. . . . . . . 5-22
5-19. Merging of intervals derived from the

records . . . . . . . . . . . . . 5-24
5-20. Status of the resource and the schedule for

June 23, 1999 . . . . . . . . . . . 5-25
5-21. Using the APPLY SCHEDULE clause 5-25
5-22. Modifying an update definition using the

DROP statement . . . . . . . . . 5-28
5-23. Using the ALTER UPDATE statement 5-28
6-1. Using the WHERE clause on the COLLECT

statement . . . . . . . . . . . . 6-1
6-2. Using the INCLUDE clauses on the

COLLECT statement . . . . . . . . 6-2
6-3. Using the EXCLUDE clauses on the

COLLECT statement . . . . . . . . 6-2
6-4. Using the percent sign (%) . . . . . . 6-2
6-5. Using the COMMIT AFTER clause of the

COLLECT statement . . . . . . . . 6-3
6-6. Using the BUFFER clause of the COLLECT

statement . . . . . . . . . . . . 6-3
6-7. Using the REPROCESS keyword . . . . 6-4
6-8. Using the HEADER, TIMESTAMP, FIRST

RECORD, and LAST RECORD clauses of
the DEFINE LOG statement . . . . . . 6-5

10-1. Example of DRLSYS.DAY_OF_WEEK table 10-4
10-2. Example of DRLSYS.SPECIAL_DAY table 10-4
10-3. Example of a record containing nested

sections. . . . . . . . . . . . . 10-6
10-4. Example of DRLSYS.PERIOD_PLAN table 10-12
10-5. DRLSYS.DAY_OF_WEEK table 10-13
10-6. DRLSYS.SPECIAL_DAY table 10-13
10-7. Example of a record with nested sections 10-16
11-1. ALTER LOG statement . . . . . . . 11-3
11-2. ALTER RECORD statement . . . . . . 11-6
11-3. ALTER RECORDPROC statement 11-7
11-4. ALTER UPDATE statement . . . . . . 11-9
11-5. COLLECT statement . . . . . . . . 11-14
11-6. COMMENT ON statement . . . . . . 11-15
11-7. DEFINE LOG statement . . . . . . . 11-18

ix



11-8. Example of the DEFINE PURGE
statement . . . . . . . . . . . 11-19

11-9. Example of a DEFINE RECORD statement 11-27
11-10. DEFINE RECORDPROC statement 11-29
11-11. DEFINE UPDATE statement . . . . . 11-31
11-12. DROP statement . . . . . . . . . 11-39
11-13. LIST RECORD statement . . . . . . 11-45
11-14. Messages from the LIST RECORD

statement . . . . . . . . . . . 11-45
11-15. Results from the LIST RECORD statement 11-46
11-16. LOGSTAT statement . . . . . . . . 11-46
11-17. Messages from the LOGSTAT statement 11-47
11-18. PURGE statement . . . . . . . . . 11-48
11-19. RECALCULATE statement . . . . . . 11-52
11-20. SET statement . . . . . . . . . . 11-53
13-1. Tabular report produced from

DRL.RWSTAT . . . . . . . . . . 13-2
13-2. Graphic report produced from

DRL.RWSTAT . . . . . . . . . . 13-2

13-3. Using the DEFINE GROUP statement 13-3
13-4. Using the DEFINE REPORT statement for

a tabular report . . . . . . . . . . 13-3
13-5. Using the DEFINE REPORT statement for

a chart . . . . . . . . . . . . . 13-4
13-6. JCL for storing report definitions in batch 13-5
15-1. DEFINE GROUP statement . . . . . . 15-2
15-2. DEFINE REPORT statement . . . . . . 15-5
15-3. DROP GROUP statement. . . . . . . 15-6
15-4. DROP REPORT statement . . . . . . 15-7
A-1. Processing for log and record procedures A-1
A-2. Defining a log procedure . . . . . . . A-2
A-3. Defining a record procedure . . . . . . A-2
A-4. Supplying a parameter using the PARM

option . . . . . . . . . . . . . A-3
A-5. Sample JCL for linking the DRL2CTOP

module . . . . . . . . . . . . . A-6
B-1. Sample JCL for the log collector . . . . . B-1
B-2. JCL for defining reports in batch . . . . B-3

x Tivoli Decision Support for z/OS: Language Guide and Reference



Tables

2-1. Structure of records containing data about
read and write errors . . . . . . . . 2-1

2-2. Contents of RWSTAT.EXAMPLE (in
hexadecimal) . . . . . . . . . . . 2-1

2-3. Contents of data table after data collection 2-2
2-4. Contents of DRL.RWSTAT after data

collection . . . . . . . . . . . . 2-10
3-1. Structure of a record containing a section 3-3
3-2. Structure of Type A records in

RWINFO.LOG log data set . . . . . . 3-5
3-3. Structure of Type B records in

RWINFO.LOG log data set . . . . . . 3-6
4-1. Contents of DRL.STATS_H data table after

collecting log data . . . . . . . . . 4-4
4-2. Contents of DRL.STATS_D after collecting

log data . . . . . . . . . . . . . 4-7
4-3. Contents of DRL.STATS_H before the

RECALCULATE statement is executed . . 4-8
4-4. Contents of DRL.STATS_H after the

RECALCULATE statement is executed . . 4-9
5-1. Contents of DRL.CPUTAB after data

collection . . . . . . . . . . . . 5-1
5-2. Structure of a record containing a repeated

section . . . . . . . . . . . . . 5-2
5-3. Examples of records with repeated section 5-4
5-4. The accessible fields when SECTION is not

specified . . . . . . . . . . . . 5-4
5-5. Contents of DRL.TOTAL after data

collection . . . . . . . . . . . . 5-5
5-6. Internal records generated as a result of

specifying SECTION SUBIO . . . . . . 5-5
5-7. Contents of DRL.BLOCK after data

collection . . . . . . . . . . . . 5-6

5-8. Structure of a record containing nested
sections . . . . . . . . . . . . . 5-6

5-9. Contents of DRL.PROERR after data
collection . . . . . . . . . . . . 5-9

5-10. Internal records generated for nested
repeated section . . . . . . . . . . 5-10

5-11. Contents of CPU_INFO records 5-14
5-12. Contents of DRL.RTIME . . . . . . . 5-16
5-13. CPU_IN records containing data to be

distributed . . . . . . . . . . . 5-16
5-14. Contents of DRL.DIST after data collection 5-18
5-15. Layout of Type A records (RES_DATA_A) 5-19
5-16. Layout of Type B records (RES_DATA_B) 5-19
5-17. Layout of Type C records (RES_DATA_C) 5-19
5-18. Data table DRLAVAIL_STATUS: an

example of availability data . . . . . . 5-21
5-19. Interval type codes for resource availability 5-21
5-20. Example of a schedule in

DRLSYS.SCHEDULE table . . . . . . 5-24
5-21. Temporary internal table created by APPLY

SCHEDULE . . . . . . . . . . . 5-26
5-22. Contents of the

DRL.AVAIL_IN_SCHEDULE table after
data collection . . . . . . . . . . 5-27

6-1. Fields that are common to all records in
SUB_LOG . . . . . . . . . . . . 6-4

9-1. Logical operation NOT . . . . . . . 9-12
9-2. Logical operations AND and OR 9-12
11-1. Field formats . . . . . . . . . . 11-23
11-2. Table space type . . . . . . . . . 11-40
13-1. Contents of DRL.RWSTAT data table 13-1
A-1. Input and output of log and record

procedures. . . . . . . . . . . . A-8

xi



xii Tivoli Decision Support for z/OS: Language Guide and Reference



Preface

The Language Guide and Reference is a user's guide and reference book for the IBM®

Tivoli® Decision Support for z/OS®log collector language and report definition
language. It describes how to use these languages.

IBM Tivoli Decision Support for z/OS is hereafter also referred to as Tivoli
Decision Support for z/OS.

The following terms are used interchangeably throughout this book:
v MVS™, OS/390®, and z/OS
v OPC and Tivoli Workload Scheduler

Note: To use the report definition language, you must install QMF™ on your
system.

Who should read this book
The Language Guide and ReferenceLanguage Guide and Reference is for Tivoli Decision
Support for z/OS administrators and performance analysts, or programmers who
are responsible for maintaining system log data and reports. To understand this
book, you should be familiar with Structured Query Language (SQL) and DB2®.

What this book contains
This book is a guide to understanding and customizing Tivoli Decision Support for
z/OS to bring maximum benefit to your organization and to users. The book
contains the following parts:
v Part I, “Guide to the log collector language” introduces the Tivoli Decision

Support for z/OS log collector and describes how to use its log collector
language to define and manage logs, records, tables, and updates.

v Part II, “Reference to the log collector language” presents the reference
information for each element, function, and statement of the Tivoli Decision
Support for z/OS log collector language. Each reference contains a syntax
diagram, a description, and a simple example of usage. A section is included on
how to read the syntax diagrams.

v Part III, “Guide to the report definition language” describes how to use the
Tivoli Decision Support for z/OS report definition language to define reports
and report groups to Tivoli Decision Support for z/OS.

v Part IV, “Reference to the report definition language” presents the reference
information for the report definition language statements.

v Part V, “Appendixes” provides information about using the log and record
procedures, using the JCL to submit batch jobs, and how to obtain support for
IBM software products.

A glossary and index follows the appendixes.

xiii



Publications
This section lists publications in the Tivoli Decision Support for z/OS library and
any other related documents. It also describes how to access Tivoli publications
online, how to order Tivoli publications, and how to submit comments on Tivoli
publications.

Tivoli Decision Support for z/OS library
The following documents are available in the Tivoli Decision Support for z/OS
library:
v , SH19-6816, SH19-6816

Provides information about initializing the Tivoli Decision Support for z/OS
database and customizing and administering Tivoli Decision Support for z/OS.

v , SH19-4019.
Provides information for administrators and users about collecting and reporting
performance data generated by AS/400 systems.

v , SH19-6820.
Provides information for administrators and users about collecting and reporting
performance data generated by Customer Information and Control System
(CICS®).

v , SH19-4018.
Provides information for administrators and users about collecting and reporting
performance data generated by operating systems and applications running on a
workstation.

v , SH19-6842.
Provides information for users who display existing reports, for users who create
and modify reports, and for administrators who control reporting dialog default
functions and capabilities.

v , SH19-6825.
Provides information for administrators and users about collecting and reporting
performance data generated by Information Management System (IMS™).

v , SH19-6817.
Provides information for administrators, performance analysts, and
programmers who are responsible for maintaining system log data and reports.

v , SH19-6902.
Provides information to help operators and system programmers understand,
interpret, and respond to Tivoli Decision Support for z/OS messages and codes.

v , SH19-6901.
Provides information for network analysts or programmers who are responsible
for setting up the network reporting environment.

v , SH19-6822.
Provides reference information for network analysts or programmers who use
the Network Performance feature.

v , SH19-6821.
Provides information for network analysts or programmers who use the
Network Performance feature reports.

v , SH19-4495.

xiv Tivoli Decision Support for z/OS: Language Guide and Reference



Provides information for users who want to use Tivoli Decision Support for
z/OS to collect and report performance data generated by Resource Accounting
for z/OS.

v , SH19-6818.
Provides information for performance analysts and system programmers who
are responsible for meeting the service-level objectives established in your
organization.

v , SH19-6819.
Provides information for administrators and users with a variety of backgrounds
who want to use Tivoli Decision Support for z/OS to analyze z/OS, z/VM®,
zLinux, and their subsystems, performance data.

v , SH19-4494.
Provides information for administrators and users with a variety of backgrounds
who want to use Tivoli Decision Support for z/OS to analyze z/OS, z/VM,
zLinux, and their subsystems, performance data.

v , SC23-7966.
Provides information about the functions and features of the Usage and
Accounting Collector.

v IBM Online Library z/OS Software Products Collection Kit, SK3T-4270
CD containing all z/OS documentation.

Accessing terminology online
The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/ibm/terminology

Accessing publications online
IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli software information center
Web site. Access the Tivoli software information center by first going to the Tivoli
software library at the following Web address:

http://www.ibm.com/software/tivoli/library/

Scroll down and click the Product manuals link. In the Tivoli Technical Product
Documents Alphabetical Listing window, click the Tivoli Decision Support for
z/OS link to access the product library at the Tivoli software information center.

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File ” Print window that allows Adobe Reader to print letter-sized pages on
your local paper.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

Preface xv

http://www.ibm.com/ibm/terminology
http://www.ibm.com/software/tivoli/library/


For additional information, see the Accessibility Appendix in the Administration
Guide and Reference.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education/

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:
v Searching knowledge bases: You can search across a large collection of known

problems and workarounds, Technotes, and other information.
v Obtaining fixes: You can locate the latest fixes that are already available for your

product.
v Contacting IBM Software Support: If you still cannot solve your problem, and

you need to work with someone from IBM, you can use a variety of ways to
contact IBM Software Support.

For more information about these three ways of resolving problems, see
Appendix C, “Support information,” on page C-1.

Conventions used in this book
This guide uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

The following terms are used interchangeably throughout this book:
v MVS, OS/390, and z/OS.
v VM and z/VM.

Except for editorial changes, updates to this edition are marked with a vertical bar
to the left of the change.

Typeface conventions
This guide uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip, and Operating system considerations)

v Column headings in a table
v Keywords and parameters in text

Italic

v Citations (titles of books, diskettes, and CDs)
v Words defined in text
v Emphasis of words (words as words)

xvi Tivoli Decision Support for z/OS: Language Guide and Reference

http://www.ibm.com/software/tivoli/education/


v Letters as letters
v New terms in text (except in a definition list)
v Variables and values you must provide

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Programming Interfaces Information
This book is intended to help users use the languages provided by Tivoli Decision
Support for z/OS.

This book also documents Product-sensitive Programming Interfaces and
Associated Guidance Information provided by Tivoli Decision Support for z/OS.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of Tivoli Decision Support for z/OS. Use of such interfaces creates
dependencies on the detailed design or implementation of the IBM software
product. Product-sensitive programming interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interfaces and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Changes in this edition
This edition is an update of the previous edition of the same book. The changes
relate to 1.8.2 GA APAR documentation.

Chapter 9. Values and expressions
Lookup expressions syntax diagram amended to include the optional ORDER
BY parameter.
v “Lookup expressions” on page 9-14

Chapter 11. Log collector language statements
ON TIMESTAMP OVERLAP added to COLLECT statement syntax
diagram:
v “Syntax” on page 11-10

New GENERATE statements:
v “GENERATE INDEX” on page 11-39.
v “GENERATE PARTITIONING” on page 11-39.
v “GENERATE TABLESPACE” on page 11-40.

Except for editorial changes, updates to this edition are marked with a vertical bar
[|] to the left of the change.

Typeface conventions

Preface xvii



Changes in this edition

xviii Tivoli Decision Support for z/OS: Language Guide and Reference



Part 1. Log collector language guide



Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 1. Introduction to the log collector

Tivoli Decision Support for z/OS is a reporting system that collects performance
data logged by computer systems, summarizes the data, and presents it in a
variety of forms for use in systems management. Tivoli Decision Support for z/OS
consists of a base product and several optional features.

The central part of Tivoli Decision Support for z/OS is a program called the log
collector that reads performance data, organizes that data, and stores it in a DB2
database. You control the log collector with instructions written in the log collector
language. Each instruction is a statement in the language.

This topic provides an overview of the log collector and its language.

Collecting log data
About this task

Performance data about your system is obtained from sequential data sets such as
those written by system management facilities (SMF) under MVS or by
Information Management System (IMS). These data sets are called log data sets or
logs.

The main function of the log collector is to read data from the logs and store it in
DB2 tables, called data tables. This process is called collecting log data. The log
collector can perform extensive processing on the data before storing it, such as:
v Grouping data by hour, day, or month.
v Computing sums, maximum or minimum values, averages, or percentiles.
v Calculating resource availability.

The purpose of this processing is to transform large amounts of data into useful
information. The volume of data stored in the database is usually much smaller
than the volume of data read from the log.

To collect log data, you use the DEFINE LOG and DEFINE RECORD statements to
describe the log to be processed and, in particular, the layout of records in the log.
In addition, you use the DEFINE UPDATE statement to specify the processing to be
performed on the data from the log and how to update data tables with the result.

When the log collector executes the DEFINE LOG, DEFINE RECORD, and DEFINE UPDATE
statements, it stores the information contained in these statements. The log,
records, and update process then become defined to the log collector. The log
collector stores the definitions of the log, records, and update process, not the
statements themselves.

Having defined the log, records, and update process, you can collect data from the
log using the COLLECT statement. When the log collector executes this statement, it
retrieves the stored definitions and performs the data collection specified by those
definitions.

You can use the stored definitions any number of times to collect data from any
number of log data sets, as long as the definitions properly describe the data sets
and the required processing. Typically, you define the log, records, and update

1-1



process only once, when installing Tivoli Decision Support for z/OS. You then use
the stored definitions to periodically collect performance data generated by your
installation.

Listing log data
About this task

You might need to examine the contents of a log data set without updating the
data tables. If you have defined the log and its records to the log collector, you can
use the LIST RECORD statement. When the log collector executes this statement, it
uses the stored log and record definitions to interpret the log data, then formats
the data as specified by the LIST RECORD statement. You can specify the result to be
a printable file or a file in the integration exchange format (IXF).

To count the number of records for each record type contained in the log, use the
LOGSTAT statement.

Maintaining data tables
About this task

Not all performance data is kept indefinitely; it is discarded when no longer
useful. You might, for example, discard daily statistics when they are one month
old and monthly statistics when they are one year old.

You can use the log collector to discard old data. The basic principle is the same as
for collecting data. You store the definition of the job to be done, and then
repeatedly use the stored definition to perform that job.

Using the DEFINE PURGE statement, you specify a purge condition for a data table.
The condition identifies the data to be discarded, depending upon the current date
and time. When the log collector executes this statement, it stores the purge
condition, which becomes defined to the log collector. Having defined the purge
condition for one or more tables, you can discard old data using the PURGE
statement. When the log collector executes this statement, it retrieves the stored
purge conditions and purges the tables based on those conditions.

Occasionally, data entered into a data table is incorrect or the data table is
damaged. To repair the data, you can use SQL statements executed from Query
Management Facility (QMF) or the log collector. You can also use the
RECALCULATE statement to alter data stored by the log collector.

Maintaining definitions
About this task

The main principle of using the log collector is that you must define the log,
records, update process, and purge conditions only once. Having defined them,
you can use the stored definitions repeatedly for production runs.

Sometimes, however, you might need to change the stored definitions. For
example, you might install a new version of a product that generates slightly
different records in its log, or you might decide to collect more information.

Collecting log data

1-2 Tivoli Decision Support for z/OS: Language Guide and Reference



The log collector language includes several ALTER statements for modifying stored
definitions. You can also delete an entire stored definition using the DROP statement,
and then store a modified definition using one of the DEFINE statements.

You can document the stored definitions by adding comments to them using the
COMMENT ON statement. When you display the definitions online using the
administration dialog, you see the comments you stored.

Ready-made definitions
Tivoli Decision Support for z/OS provides definitions for most of the standard
IBM logs. These definitions are provided in the form of DEFINE LOG and DEFINE
RECORD statements. You can use these definitions as they are, or modify them for
your needs. You can also use them as a pattern for creating your own definitions.

The Tivoli Decision Support for z/OS features also provide many table and update
definitions that you can use.

Summary of log collector statements
The log collector language consists of these statements:
v Definition statements

– DEFINE LOG
– DEFINE PURGE
– DEFINE RECORD
– DEFINE RECORDPROC
– DEFINE UPDATE
– ALTER LOG
– ALTER RECORD
– ALTER RECORDPROC
– ALTER UPDATE
– SET
– DROP
– COMMENT ON

v Log processing statements
– COLLECT
– LIST RECORD
– LOGSTAT

v Table maintenance statements
– PURGE
– RECALCULATE

v Other statements
– SQL

Maintaining definitions

Chapter 1. Introduction to the log collector 1-3



Summary of log collector statements

1-4 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 2. How to use the log collector language

This topic uses a simple example to describe how to use the log collector language.

In this scenario you want to determine how many read and write errors are
produced per hour by three applications; APPL1, APPL2, and APPL3. These
applications write information about read and write errors to a log data set called
RWSTAT.EXAMPLE. The applications update this data set hourly.

You want to collect data from RWSTAT.EXAMPLE, process it, and store the result
in a DB2 data table.

Table 2-1 shows the structure of the records in RWSTAT.EXAMPLE.

Table 2-1. Structure of records containing data about read and write errors

Field Name Offset Length Data format Description

A_NAME 0 10 Character string Contains the name of the application
writing to this data set (APPL1, APPL2, or
APPL3)

DATE 10 4 Packed decimal in the
idd:break>format
0cyydddF

Contains the date, where:
c Century
yy Year within the century
ddd Day within the year

TIME 14 6 Character string in the
idd:break>format hhmmss

Contains the time, where:
hh Hour
mm Minute
ss Second

R_ERR 20 4 Binary The number of read errors

W_ERR 24 4 Binary The number of write errors

Table 2-2 shows the data (in hexadecimal) contained in RWSTAT.EXAMPLE.

Table 2-2. Contents of RWSTAT.EXAMPLE (in hexadecimal)

A_NAME DATE TIME R_ERR W_ERR

X'C1D7D7D3F1' X'0093001F' X'F0F1F0F0F0F1' X'00000003' X'00000005'

X'C1D7D7D3F2' X'0093001F' X'F0F1F0F0F0F2' X'00000001' X'00000003'

X'C1D7D7D3F3' X'0093001F' X'F0F1F0F0F0F3' X'00000002' X'00000000'

X'C1D7D7D3F1' X'0093001F' X'F0F2F0F0F0F1' X'00000000' X'00000000'

X'C1D7D7D3F2' X'0093001F' X'F0F2F0F0F0F2' X'00000002' X'00000001'

X'C1D7D7D3F3' X'0093001F' X'F0F2F0F0F0F3' X'00000005' X'00000003'

X'C1D7D7D3F1' X'0093001F' X'F0F3F0F0F0F1' X'00000004' X'00000006'

X'C1D7D7D3F2' X'0093001F' X'F0F3F0F0F0F2' X'00000001' X'00000003'

X'C1D7D7D3F3' X'0093001F' X'F0F3F0F0F0F3' X'00000002' X'00000002'

X'C1D7D7D3F1' X'0093001F' X'F0F4F0F0F0F1' X'00000002' X'00000006'

X'C1D7D7D3F2' X'0093001F' X'F0F4F0F0F0F2' X'00000000' X'00000000'

X'C1D7D7D3F3' X'0093001F' X'F0F4F0F0F0F3' X'00000004' X'00000005'

2-1



Table 2-2. Contents of RWSTAT.EXAMPLE (in hexadecimal) (continued)

A_NAME DATE TIME R_ERR W_ERR

X'C1D7D7D3F1' X'0093001F' X'F0F5F0F0F0F1' X'00000001' X'00000006'

X'C1D7D7D3F2' X'0093001F' X'F0F5F0F0F0F2' X'00000004' X'00000007'

X'C1D7D7D3F3' X'0093001F' X'F0F5F0F0F0F3' X'00000002' X'00000004'

X'C1D7D7D3F1' X'0093001F' X'F0F6F0F0F0F1' X'00000001' X'00000001'

X'C1D7D7D3F2' X'0093001F' X'F0F6F0F0F0F2' X'00000004' X'00000000'

X'C1D7D7D3F3' X'0093001F' X'F0F6F0F0F0F3' X'00000003' X'00000005'

Table 2-3 shows the results you want to obtain when you collect data from
RWSTAT.EXAMPLE.

Table 2-3. Contents of data table after data collection

T_DATE T_HOUR RD_ERR WR_ERR TOT_ERR

1993-01-01 1 6 8 14

1993-01-01 2 7 4 11

1993-01-01 3 7 11 18

1993-01-01 4 6 11 17

1993-01-01 5 7 17 24

1993-01-01 6 8 6 14

The data table contains these fields:

T_DATE
Date the read and write errors occurred.

T_HOUR
Hour within the date the read and write errors occurred.

RD_ERR
Total number of read errors generated per hour.

WR_ERR 
Total number of write errors generated per hour.

TOT_ERR 
Combined total of read and write errors generated per hour.

To collect log data and produce the data table in Table 2-3, you must define to the
log collector:
v The location and structure of the source data
v How to process that data
v How to store the results in a data table

You write these definitions in the log collector language, and then use the log
collector to store the definitions.

You must also create the data table using SQL.

Getting started with the log collectorlog collector language

2-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Defining a log
Figure 2-1 shows the DEFINE LOG statement used to define RWSTAT.EXAMPLE
to the log collector.

In Figure 2-1, you identified the log by specifying a name for the log (RWSTAT).
Using the COMMENT ON statement, you also specified a description for the log,
which appears when you list the log online using the administration dialog. For
more information about the administration dialog, refer to the Administration Guide
and Reference.

Defining a record
To define records to Tivoli Decision Support for z/OS, use the DEFINE RECORD
statement in Figure 2-2.

In Figure 2-2, you identified the record (using the name R_REC) and specified that
it occurs in the RWSTAT log. Then, you identified each of the fields in the record.
For each field, you specified the name, where it occurs in the record, the length,
and the format. Consider this field description:
R_ERR OFFSET 20 LENGTH 4 BINARY,

The field called R_ERR begins at byte 20 of the R_REC record. It is 4 bytes long
and contains data in a binary format.

You define the log and record to the log collector by executing these statements.
See “Performing log collector statements” on page 2-6 for more information about
executing log collector statements.

Creating a data table
To store data from R_REC records into a data table, you must create the table
using SQL. You can issue SQL statements from QMF. For more information about
using QMF to create a DB2 data table, refer to Query Management Facility: Learner's
Guide.

-- Define RWSTAT log type to Tivoli Decision Support for z/OS
DEFINE LOG RWSTAT;
COMMENT ON LOG RWSTAT IS ’Log definition for RWSTAT’

Figure 2-1. DEFINE LOG statement

-- Define R_REC record type to Tivoli Decision Support for z/OS
DEFINE RECORD R_REC IN LOG RWSTAT

FIELDS
(A_NAME OFFSET 0 LENGTH 10 CHAR,
DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
TIME OFFSET 14 LENGTH 6 TIME(HHMMSS),
R_ERR OFFSET 20 LENGTH 4 BINARY,
W_ERR OFFSET 24 LENGTH 4 BINARY);

COMMENT ON RECORD R_REC IS ’Definition of R_REC record in RWSTAT’;

Figure 2-2. DEFINE RECORD statement

Defining a log

Chapter 2. How to use the log collector language 2-3



You can also use the log collector language statement SQL to issue SQL commands
from the same data set that contains other log collector statements.

Note: This section assumes that you know how to use SQL to create DB2 tables. If
you are not an experienced using SQL, refer to DB2 SQL Reference for more
information.

Figure 2-3 shows how to use the SQL statement to create the data table shown in
Table 2-3 on page 2-2.

In Figure 2-3, you identify the table (called DRL.RWSTAT) and specify each of the
columns in the table.

When you use the log collector to store definitions (as discussed in “Performing
log collector statements” on page 2-6), the SQL statements are executed.

Defining an update
Figure 2-4 shows how to use the DEFINE UPDATE statement to store data from
the log into the data table.

In Figure 2-4, you specified a name for this update process (TOT_ERRS) and
specified how the source data is processed using the GROUP BY and SET clauses.

Understanding the GROUP BY clause
In each row of the data table, you want to collect data from records written during
the same hour on the same day. The day is identified by the DATE field of each
record. The TIME field identifies the exact time when the record was written. You
can obtain the hour part of this time using the HOUR function specifying
HOUR(TIME). First, you sort all records into groups with the same value of DATE
and HOUR(TIME) using the GROUP BY clause:

-- Submit SQL statements to create data table
SQL CREATE TABLE DRL.RWSTAT

(T_DATE DATE,
T_HOUR SMALLINT,
RD_ERR INTEGER,
WR_ERR INTEGER,
TOT_ERR INTEGER);

Figure 2-3. Creating a DB2 data table

-- Define update to store R_REC data in DRL.RWSTAT
DEFINE UPDATE TOT_ERRS

FROM R_REC
TO DRL.RWSTAT
GROUP BY
(T_DATE = DATE,
T_HOUR = HOUR(TIME))

SET
(RD_ERR = SUM(R_ERR),
WR_ERR = SUM(W_ERR),
TOT_ERR = SUM(R_ERR + W_ERR));

Figure 2-4. DEFINE UPDATE statement

Creating a data table

2-4 Tivoli Decision Support for z/OS: Language Guide and Reference



GROUP BY
(T_DATE = DATE,
T_HOUR = HOUR(TIME))

The expressions to the right of the equal signs identify the values used for
grouping. To visualize the grouping process, imagine that the log collector
maintains a number of buckets labeled with different dates and hours.

When the log collector reads each record, it computes DATE and HOUR(TIME) for
the record and then, drops the record into the appropriate bucket. After all records
are processed, each bucket contains the group of records that were written during
the same hour on the same day.

For each group of records, the log collector creates one row in the data table. It
stores the values of DATE and TIME(HOUR) for each group in the columns
T_DATE and T_HOUR, respectively. These are columns identified on the left of the
equal sign.

Figure 2-5 on page 2-6 shows how source records are grouped based on the
GROUP BY values specified in Figure 2-4 on page 2-4.

Understanding the SET clause
In each row of the data table, you want to store the sum of certain values from all
records in the group represented by that row. You identified the sums to be stored
in Figure 2-4 on page 2-4 using the SET clause:
SET
(RD_ERR = SUM(R_ERR),
WR_ERR = SUM(W_ERR),
TOT_ERR = SUM(R_ERR + W_ERR));

Each expression to the right of the equal sign specifies what to compute. The name
to the left of the equal sign identifies the column in the data table where the result
is stored. For example, TOT_ERR = SUM(R_ERR + W_ERR) is an instruction to compute
R_ERR + W_ERR for each record in the group, add up the resulting numbers, and
store the sum in the column TOT_ERR of the row.

Figure 2-5 on page 2-6 shows how expressions you specified using the SET clause
are applied to the groups of records and how the results are stored in the data
table.

Defining an update

Chapter 2. How to use the log collector language 2-5



Performing log collector statements
After writing statements to define the log, records within the log, and the update
process, you can execute these statements to store the definitions. Then, you can
use the definitions to collect log data.

For example, assume that you have typed all of the statements in a single data set
called STATSDEF, which is a member of DRL.LOCAL.DEFS. Figure 2-6 on page 2-7
shows the contents of STATSDEF.

Figure 2-5. Example of GROUP BY and SET processing

Performing log collectorlog collector statements

2-6 Tivoli Decision Support for z/OS: Language Guide and Reference



To store the log, record, and update definitions, and to execute the SQL statement
to create the data table, submit the JCL shown in Figure 2-7.

To submit the job shown in Figure 2-7, you must add the appropriate high-level
qualifier to the DD statements. You might also need to modify these parameters:

SYSTEM=DSN
Specifies DSN as the DB2 subsystem. If your DB2 system has a different
name, specify it instead.

SYSPREFIX=DRLSYS
Specifies DRLSYS as the prefix of the log collector system tables. If the log
collector system tables have a different prefix, specify it instead. If you do
not know the prefix of the system tables, consult your system
administrator.

-- Define RWSTAT log type to Tivoli Decision Support for z/OS
DEFINE LOG RWSTAT;
COMMENT ON LOG RWSTAT IS ’Log definition for RWSTAT’

-- Define R_REC record type to Tivoli Decision Support for z/OS
DEFINE RECORD R_REC IN LOG RWSTAT

FIELDS
(A_NAME OFFSET 0 LENGTH 10 CHAR,
DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
TIME OFFSET 14 LENGTH 6 TIME(HHMMSS),
R_ERR OFFSET 20 LENGTH 4 BINARY,
W_ERR OFFSET 24 LENGTH 4 BINARY);

COMMENT ON RECORD R_REC IS ’Definition of R_REC record in RWSTAT’;

-- Submit SQL statements to create data table
SQL CREATE TABLE DRL.RWSTAT

(T_DATE DATE,
T_HOUR SMALLINT,
RD_ERR INTEGER,
WR_ERR INTEGER,
TOT_ERR INTEGER);

-- Define update to store R_REC data in DRL.RWSTAT
DEFINE UPDATE TOT_ERRS

FROM R_REC
TO DRL.RWSTAT
GROUP BY
(T_DATE = DATE,
T_HOUR = HOUR(TIME))

SET
(RD_ERR = SUM(R_ERR),
WR_ERR = SUM(W_ERR),
TOT_ERR = SUM(R_ERR + W_ERR));

Figure 2-6. Contents of STATSDEF data set

//jobname JOB parameters
//LC EXEC PGM=DRLPLC,PARM=(’SYSPREFIX=DRLSYS SYSTEM=DSN’),
// REGION=1M
//STEPLIB DD DISP=SHR,DSN=DRL180.SDRLLOAD
//DRLIN DD DISP=SHR,DSN=DRL.LOCAL.DEFS(STATSDEF)
//DRLOUT DD SYSOUT=*
//DRLDUMP DD SYSOUT=*

Figure 2-7. JCL for storing log and record definitions

Performing log collectorlog collector statements

Chapter 2. How to use the log collector language 2-7



//STEPLIB DD DISP=SHR,DSN=DRL180.SDRLLOAD
Specifies DRL180.SDRLLOAD as the name of the Tivoli Decision Support
for z/OS load library. If the load library has a different name, specify it
instead. If you do not know the name of the load library, consult your
system administrator.

You might also need to add a DD statement for the DB2 load library to the
STEPLIB statement. For example:
// DD DISP=SHR,DSN=DB2.V810.SDSNLOAD

To execute the log collector statements in Figure 2-6 on page 2-7, run the job in
Figure 2-7 on page 2-7 (modified as needed). If the statements are correct, the log
collector stores the definitions and creates the data table. If the log collector finds
errors in a statement, it will not execute that statement.

The DRLOUT data set will contain messages confirming the completion of each
statement. It will also contain messages for statements that were not executed,
explaining why they were not executed.

Verifying record definitions
After storing log and record definitions, use the LIST RECORD statement to verify
that the record definition is correct. When you use the LIST RECORD statement,
you do not collect data. Instead, the record definition is applied to the log data set.

Figure 2-8 shows the LIST RECORD statement for listing R_REC records.

To use this LIST RECORD statement, submit the JCL shown in Figure 2-9.

LIST
RECORD R_REC
FIELDS DATE,

TIME,
R_ERR,
W_ERR;

Figure 2-8. LIST RECORD statement

//jobname JOB parameters
//LC EXEC PGM=DRLPLC,PARM=(’SYSPREFIX=DRLSYS SYSTEM=DSN’),
// REGION=1M
//STEPLIB DD DISP=SHR,DSN=DRL180.SDRLLOAD
//DRLLOG DD DISP=SHR,DSN=RWSTAT.EXAMPLE
//DRLIN DD *

LIST RECORD R_REC
FIELDS DATE,

TIME,
R_ERR,
W_ERR;

//DRLOUT DD SYSOUT=*
//DRLLST1 DD SYSOUT=*
//DRLDUMP DD SYSOUT=*

Figure 2-9. JCL for listing records

Performing log collectorlog collector statements

2-8 Tivoli Decision Support for z/OS: Language Guide and Reference



When you submit the JCL, change any system-dependent parameters (see
“Performing log collector statements” on page 2-6).

At the completion of the job, DRLOUT contains messages from the log collector as
a result of the LIST RECORD statement execution. Figure 2-10 shows an example
of the messages that appear in DRLOUT.

The file DRLLST1 contains a list of the record fields and the data contained in
those fields. Figure 2-11 shows an example of DRLLST1 contents.

Collecting log data
After successfully storing definitions, you can collect log data using those
definitions.

Collecting log data in batch
To collect log data in batch, use the JCL in Figure 2-12 on page 2-10.

DRL0300I List started at 1993-02-25-00.14.21.
DRL0302I Processing RWSTAT.EXAMPLE on TSOL01.
DRL0380I 18 records read from the input log.
DRL0003I
DRL0315I Records read from the log or built by log procedure:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I R_REC | 18
DRL0318I -------------------|----------
DRL0321I Total | 18
DRL0381I 20 records written to the DRLLST1 file.
DRL0301I List ended at 1993-02-25-00.14.21.

Figure 2-10. Messages resulting from LIST RECORD statement execution

DATE TIME R_ERR W_ERR
---------- -------- ----------- -----------
1993-01-01 01.00.01 3 5
1993-01-01 01.00.02 1 3
1993-01-01 01.00.03 2 0
1993-01-01 02.00.01 0 0
1993-01-01 02.00.02 2 1
1993-01-01 02.00.03 5 3
1993-01-01 03.00.01 4 6
1993-01-01 03.00.02 1 3
1993-01-01 03.00.03 2 2
1993-01-01 04.00.01 2 6
1993-01-01 04.00.02 0 0
1993-01-01 04.00.03 4 5
1993-01-01 05.00.01 1 6
1993-01-01 05.00.02 4 7
1993-01-01 05.00.03 2 4
1993-01-01 06.00.01 1 1
1993-01-01 06.00.02 4 0
1993-01-01 06.00.03 3 5

Figure 2-11. Records listed by the LIST RECORD statement

Performing log collectorlog collector statements

Chapter 2. How to use the log collector language 2-9



In Figure 2-12, you specify that you want to collect RWSTAT logs. When you
execute this JCL, the log collector processes all update definitions that you have
stored for this log. Here, the log collector processes the TOT_ERRS update, reading
data from R_REC records and storing it in DRL.RWSTAT. The data set specified by
the DRLOUT statement contains error messages that occur during processing.

At the completion of the job, DRLOUT contains messages from the log collector as
a result of the COLLECT statement execution. Figure 2-13 shows an example of the
messages that appear in DRLOUT.

DRL.RWSTAT contains the data shown in Table 2-4.

Table 2-4. Contents of DRL.RWSTAT after data collection

T_DATE T_HOUR RD_ERR WR_ERR TOT_ERR

2000-01-01 1 6 8 14

2000-01-01 2 7 4 11

2000-01-01 3 7 11 18

2000-01-01 4 6 11 18

2000-01-01 5 7 17 24

2000-01-01 6 8 6 14

//jobname JOB parameters
//LC EXEC PGM=DRLPLC,PARM=(’SYSPREFIX=DRLSYS SYSTEM=DSN’),
// REGION=1M
//STEPLIB DD DISP=SHR,DSN=DRL180.SDRLLOAD
//DRLIN DD *

COLLECT RWSTAT;
//DRLLOG DD DISP=SHR,DSN=RWSTAT.EXAMPLE
//DRLOUT DD SYSOUT=*
//DRLDUMP DD SYSOUT=*

Figure 2-12. JCL used to collect log data

COLLECT RWSTAT
DRL0300I Collect started at 1993-03-31-22.47.34
DRL0302I Processing RWSTAT.EXAMPLE on TSOL02
DRL0310I A database update started after 18 records due to end of log
DRL0313I The collect buffer was filled 0 times. Consider increasing collect buffer size
DRL0003I
DRL0315I Records read from the log or built by log procedure:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I R_REC | 18
DRL0318I -------------------|----------
DRL0321I Total | 18
DRL0003I
DRL0323I -------Buffer------ ------Database-----
DRL0324I Table name | Inserts Updates Inserts Updates
DRL0325I ----------------------------|----------------------------------------
DRL0326I DRL .RWSTAT | 6 12 6 0
DRL0325I ----------------------------|----------------------------------------
DRL0327I Total | 6 12 6 0
DRL0003I
DRL0301I Collect ended at 1993-03-31-22.47.37

Figure 2-13. Messages resulting from COLLECT statement execution

Collecting log data

2-10 Tivoli Decision Support for z/OS: Language Guide and Reference



Collecting log data online
You can perform the data collection process online using the administration dialog.
From the administration dialog, you can:
v Execute log collector statements
v Verify record definitions
v Collect log data using the COLLECT statement

For more information about using the administration dialog, refer to the
Administration Guide.

Collecting log data

Chapter 2. How to use the log collector language 2-11



2-12 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 3. Defining logs and records

Chapter 2, “How to use the log collector language,” on page 2-1, described how to
write definitions and collect log data from a simple log data set. However, log data
sets are typically much more complex. Many log data sets contain more than one
record type, each with a different record structure.

This chapter describes more about writing record definitions. It also explains how
to define more complex record structures and how to modify record definitions
after they are stored.

Learning more about writing record definitions
About this task

Figure 3-1 shows the record definition used to define R_REC records.

For each of the fields, a field name, offset, length, and field format were specified.
When you define information about the fields, you can also use these
specifications:

Field name
You must provide a field name if you plan to collect data from that field.
Otherwise, you can use an asterisk (*) for the field name.

For example, you could specify this record definition:
DEFINE RECORD R_REC IN LOG RWSTAT

FIELDS
(* OFFSET 0 LENGTH 10 CHAR,
DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
TIME OFFSET 14 LENGTH 6 TIME(HHMMSS),
R_ERR OFFSET 20 LENGTH 4 BINARY,
W_ERR OFFSET 24 LENGTH 4 BINARY);

This definition specifies that a field begins at offset 0 and is 10 bytes long.
When you use an asterisk for the field name, however, you cannot refer to
this field using any other log collectorlog collector statement (such as
DEFINE UPDATE or LIST RECORD).

Field offset
You can explicitly identify each offset as shown in Figure 3-1, or you can
leave the offset blank. For example, you could specify this record
definition:

-- Define R_REC record type to Tivoli Decision Support for z/OS
DEFINE RECORD R_REC IN LOG RWSTAT

FIELDS
(A_NAME OFFSET 0 LENGTH 10 CHAR,
DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
TIME OFFSET 14 LENGTH 6 TIME(HHMMSS),
R_ERR OFFSET 20 LENGTH 4 BINARY,
W_ERR OFFSET 24 LENGTH 4 BINARY);

COMMENT ON RECORD R_REC IS ’Definition of R_REC record in RWSTAT;

Figure 3-1. Record definition for R_REC record type

3-1



DEFINE RECORD R_REC IN LOG RWSTAT
FIELDS
(A_NAME OFFSET 0 LENGTH 10 CHAR,
DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
TIME LENGTH 6 TIME(HHMMSS),
R_ERR LENGTH 4 BINARY,
W_ERR OFFSET 24 LENGTH 4 BINARY);

The DATE field begins at offset 10 and is 4 bytes long. An omitted offset
for the TIME field means that it immediately follows the DATE field and
begins at offset 14 (the offset of the DATE field plus the length of the
DATE field). Because the R_ERR field immediately follows the TIME field,
it begins at offset 20.

Field length
You can explicitly specify the length of a field or use the default length,
which is determined by the field format.

For example, the default length for a binary field is 4 bytes. So, you could
specify the R_ERR field without a length:
DEFINE RECORD R_REC IN LOG RWSTAT

FIELDS
(A_NAME OFFSET 0 LENGTH 10 CHAR,
DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
TIME LENGTH 6 TIME(HHMMSS),
R_ERR BINARY,
W_ERR OFFSET 24 LENGTH 4 BINARY);

Field format
If you do not specify a format for a field, the default format is
hexadecimal. Table 11-1 on page 11-23 shows a complete list of field
formats.

You can also specify the length of some fields when you specify the
format. For example, instead of using the field length when you specify a
character field format, you can use CHAR(4).

Note: You can specify the field length and field format together for the
CHAR and BIT field formats. This notation is not allowed on any other
field formats.

When you define a record using the DEFINE RECORD statement, you must
specify only the fields from which you plan to collect data. For example, Figure 3-2
shows another way to define fields in the R_REC record:

In Figure 3-2, you do not specify the A_NAME field because it does not provide
information that is meaningful to the total number of read and write errors per
hour. You also use defaults for the field offset and field length (the offset for the
DATE field is necessary because the field does not begin at offset 0).

DEFINE RECORD R_REC IN LOG RWSTAT
FIELDS
(DATE OFFSET 10 DATE(0CYYDDDF),
TIME TIME(HHMMSS),
R_ERR BINARY,
W_ERR BINARY);

Figure 3-2. Defining the R_REC using defaults

Learning more about writing record definitions

3-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Although using the defaults shown in Figure 3-2 on page 3-2 makes typing
definitions quicker, you should be careful. Assume that you defined the fields in
R_REC with no explicit offsets. This means that A_NAME begins at offset 0 and
DATE begins at offset 10. If you later edit the definition and delete A_NAME,
DATE would be listed as the first field in the record and begin at offset 0. The
offset of all other fields would be reduced by 10 (the length of A_NAME).
Collecting data with this definition would produce invalid results.

Another problem could occur if you specified an incorrect length for a field.
Because offsets are calculated using lengths, the error would result in an incorrect
offset for all remaining fields.

Defining sections within a record
About this task

Many log data set records, such as SMF records, contain sections. A section is a
series of adjacent bytes that contain data located within a record. In records
containing sections, information about the section (such as the offset within the
record where the section occurs and the length of the section) can be stored within
the record itself. This information can be fixed or can vary, depending on the data
in the record (and it can differ for each record).

A record can also have repeated sections, which are sections that occur more than
once in a record, and nested sections, which are sections within sections. For more
information about repeated sections, see “Using repeated sections within records”
on page 5-2. For more information about nested sections, see “Using nested
sections within records” on page 5-6.

Defining a record containing a section
Assume that you want to collect data about the subsystems running under MVS in
your organization. The data is contained in a section called SUB_1 of the SUB_REC
record. Two fields (SUB_OFF and SUB_LEN) in the record provide information
about the location and length of the subsystem section. The SUB_1 section begins
at the offset specified in the SUB_OFF field. Its length is specified in the SUB_LEN
field.

Table 3-1 shows the structure of the SUB_REC record.

Table 3-1. Structure of a record containing a section

Field name Offset Length Data format Description

REC_LEN 0 2 Binary Length of the record

REC_TYPE 2 2 Character Type of record

REC_SID 4 4 Character System identifier

REC_DATE 8 4 Packed Decimal Date record was written

REC_TIME 12 6 Character Time record was written

SUB_OFF 18 2 Binary Offset of subsystem section

SUB_LEN 20 4 Binary Length of subsystem section

v
v (Other fields within the record)
v

SUB_1 section

Learning more about writing record definitions

Chapter 3. Defining logs and records 3-3



Table 3-1. Structure of a record containing a section (continued)

Field name Offset Length Data format Description

SUB1_TYPE 0 2 Character Subsystem identifier

SUB1_PNM 2 8 Character Program name

SUB1_VER 10 2 Character Version number of program

SUB1_REL 12 2 Character Release level of program

Figure 3-3 shows the format of the SUB_REC record.

To write a record definition for the SUB_REC record, use the DEFINE RECORD
statement shown in Figure 3-4.

In Figure 3-4, you identify the record (called SUB_REC) and specify that it occurs
in a log called SUB_LOG.

REC_LEN

R_REC record SUB_1 section

Specifies offset

SUB1_TYPEREC_TYPE SUB1_PNMREC_SID SUB1_VERREC_DATE REC_TIME SUB1_RELSUB_OFF SUB_LEN

Figure 3-3. Structure of the SUB_REC record and SUB_1 section

-- Define SUB_REC record
DEFINE RECORD SUB_REC IN LOG SUB_LOG

FIELDS
(REC_LEN OFFSET 0 LENGTH 2 BINARY,
REC_TYPE OFFSET 2 LENGTH 2 CHAR,
REC_SID OFFSET 4 LENGTH 4 CHAR,
REC_DATE OFFSET 8 LENGTH 4 DATE(0CYYDDDF),
REC_TIME OFFSET 12 LENGTH 6 TIME(HHMMSS),
SUB_OFF OFFSET 18 LENGTH 2 BINARY,
SUB_LEN OFFSET 20 LENGTH 4 BINARY)

-- Define section SUB_1
SECTION SUB_1
OFFSET SUB_OFF
LENGTH SUB_LEN
FIELDS
(SUB1_TYPE OFFSET 0 LENGTH 2 CHAR,
SUB1_PNM OFFSET 2 LENGTH 8 CHAR,
SUB1_VER OFFSET 10 LENGTH 2 CHAR,
SUB1_REL OFFSET 12 LENGTH 2 CHAR)

-- End of definition for section SUB_1
-- End of definition for record SUB_REC
;
COMMENT ON RECORD SUB_REC IS ’Definition for record with a section’;

Figure 3-4. Defining a record with a section

Defining sections within a record

3-4 Tivoli Decision Support for z/OS: Language Guide and Reference



Next, you identify each of the fields in the record. Remember that you need only
define the fields that you want to reference later. However, you must identify the
SUB_OFF and SUB_LEN fields because they are used in the SECTION clause.

The SECTION clause specifies that section SUB_1 occurs in the SUB_REC record
and identifies the fields that occur in the section:

SECTION SUB_1
OFFSET SUB_OFF
LENGTH SUB_LEN
FIELDS
(SUB1_TYPE OFFSET 0 LENGTH 2 CHAR,
SUB1_PNM OFFSET 2 LENGTH 8 CHAR,
SUB1_VER OFFSET 10 LENGTH 2 CHAR,
SUB1_REL OFFSET 12 LENGTH 2 CHAR)

Using the OFFSET clause, you specify that the value contained in field SUB_OFF is
the offset where SUB_1 begins. The length of SUB_1 is the value contained in
SUB_LEN.

You identify fields in a section the same way you identified fields in a record. The
offsets of a field in a section begin from the start of the section. So, the first field,
SUB1_TYPE, begins at offset 0.

You can document sections within your definitions by adding comments:
-- Define SUB_REC record

-- Define section SUB_1
-- End of definition for section SUB_1

-- End of definition for record SUB_REC

Typically, record definitions are complex and contain definitions for many different
sections. Adding comments throughout record definitions make them easier to
read.

Defining multiple record types
So far, you have assumed that all records within a log data set are the same.
However, log data sets typically contain many different kinds of records (called
record types).

For example, assume that you have a log data set (called RWINFO.LOG) that
contains data about read and write errors. Some applications (APPL1, APPL2, and
APPL3) write records of type A to RWINFO.LOG.

Table 3-2 shows the structure of type A records. Notice that records of type A
always have a field called REC_TYPE that contains the value A.

Table 3-2. Structure of Type A records in RWINFO.LOG log data set

Field name Offset Length Data format Description

REC_TYPE 0 2 Character Contains the record type (here, it is A)

A_NAME 2 10 Character Contains the name of the application writing to
this data set

DATE 12 4 Packed decimal in
format 0cyydddf

Contains the date, where:
0c Century
yy Year within the century
ddd Day within the year
f Any character

Defining sections within a record

Chapter 3. Defining logs and records 3-5



Table 3-2. Structure of Type A records in RWINFO.LOG log data set (continued)

Field name Offset Length Data format Description

TIME 16 6 Character string in the
format hhmmss

Contains the time where:
hh Hour
mm Minute
ss Second

R_ERR 22 4 Binary The number of read errors

W_ERR 26 4 Binary The number of write errors

Other applications (APPL4, APPL5, and APPL6) write records of type B to
RWINFO.LOG. Table 3-3 shows the structure of type B records. Notice that records
of type B always have a field called REC_TYPE that contains the value B.

Table 3-3. Structure of Type B records in RWINFO.LOG log data set

Field name Offset Length Data format Description

REC_TYPE 0 2 Character Contains the record type (here, it is B)

DATE 2 4 Packed decimal in the
format 0cyydddF

Contains the date where:
0c Century
yy Year within the century
ddd Day within the year
f Any character

TIME 6 6 Character string in the
format hhmmss

Contains the time where:
hh Hour
mm Minute
ss Second

R1_ERR 12 4 Binary The number of read errors

W1_ERR 16 4 Binary The number of write errors

Figure 3-5 shows the contents of the records in RWINFO.LOG.

Tivoli Decision Support for z/OS processes records according to the following
standard:
v If a record is fixed length, the first 2 bytes identify the record type.
v If a record is variable length, the second 2 bytes identify the record length.

Tivoli Decision Support for z/OS can process customized records that do not
contain these fields.

Figure 3-5. Contents of RWINFO.LOG data set.

Defining multiple record types

3-6 Tivoli Decision Support for z/OS: Language Guide and Reference



Note: If customized records differ only in the first 2 or 4 bytes and are otherwise
identical, Tivoli Decision Support for z/OS assumes that the log has already been
processed.

Defining the records
About this task

Figure 3-6 shows how to define both type A and type B records.

In Figure 3-6, you create a separate definition for each record type. You distinguish
between different record types using the IDENTIFIED BY clause. Whenever
REC_TYPE='A', the record definition for type A records apply. Whenever
REC_TYPE='B', the record definition for type B records apply.

“Storing data from multiple sources in a single data table” on page 4-1 describes
how to use these definitions to collect data and update a data table.

Changing log and record definitions
About this task

After you have stored log and record definitions you can change them:
v Using the DROP statement to delete the existing definition and then using the

DEFINE LOG or the DEFINE RECORD statement to write a new log or record
definition

v Using the ALTER LOG or the ALTER RECORD statement to change a log or
record definition

-- Create the log and record definitions
DEFINE LOG RWINFO;
COMMENT ON LOG RWINFO IS ’Definition of log with multiple records’;

-- Create record definition for Type A records
DEFINE RECORD TYPA_REC IN LOG RWINFO

IDENTIFIED BY REC_TYPE=’A’
FIELDS
(REC_TYPE OFFSET 0 LENGTH 2 CHAR,
A_NAME OFFSET 2 LENGTH 10 CHAR,
DATE OFFSET 12 LENGTH 4 DATE(0CYYDDDF),
TIME OFFSET 16 LENGTH 6 TIME(HHMMSS),
R_ERR OFFSET 22 LENGTH 4 BINARY,
W_ERR OFFSET 26 LENGTH 4 BINARY);

COMMENT ON RECORD TYPA_REC IS ’Definition for type A records’;

-- Create record definition for Type B records
DEFINE RECORD TYPB_REC IN LOG RWINFO

IDENTIFIED BY REC_TYPE=’B’
FIELDS
(REC_TYPE OFFSET 0 LENGTH 2 CHAR,
DATE OFFSET 2 LENGTH 4 DATE(0CYYDDDF),
TIME OFFSET 6 LENGTH 6 TIME(HHMMSS),
R1_ERR OFFSET 12 LENGTH 4 BINARY,
W1_ERR OFFSET 16 LENGTH 4 BINARY);

COMMENT ON RECORD TYPB_REC IS ’Definition for type B records’;

Figure 3-6. Defining multiple records

Defining multiple record types

Chapter 3. Defining logs and records 3-7



Using the DROP statement to delete a record definition
About this task

You can use the DROP statement to delete a stored record definition. For example,
assume that you wanted to delete the stored definition for SUB_REC records. To
delete the definition, use this statement:
DROP RECORD SUB_REC;

You can also use the DROP statement in combination with the DEFINE RECORD
statement to make modifications to a stored definition. Assume that you want to
add N_FIELD to the SUB_1 section beginning at offset 0. Because you have
explicitly defined the offsets for each field, you must redefine each offset. One way
to redefine them would be to use the statements in Figure 3-7.

The statement DROP RECORD SUB_REC deletes the stored definition of SUB_REC. The
statement DEFINE RECORD SUB_REC stores a new definition.

Using the ALTER RECORD statement
About this task

You can use the ALTER RECORD statement to change a stored record definition.
However, you typically want to make only quick changes using the ALTER
RECORD statement, because you cannot see the original DEFINE RECORD
statement when you use the ALTER RECORD statement. In addition, if you typed

DROP RECORD SUB_REC;

-- Define SUB_REC record
DEFINE RECORD SUB_REC IN LOG SUB_LOG

IDENTIFIED BY REC_TYPE=’5’
FIELDS
(REC_LEN OFFSET 0 LENGTH 2 BINARY,
REC_TYPE OFFSET 2 LENGTH 2 CHAR,
REC_SID OFFSET 4 LENGTH 4 CHAR,
REC_DATE OFFSET 8 LENGTH 4 DATE(0CYYDDDF),
REC_TIME OFFSET 12 LENGTH 6 TIME(HHMMSS),
SUB_OFF OFFSET 18 LENGTH 2 BINARY,
SUB_LEN OFFSET 20 LENGTH 4 BINARY)

-- Define section SUB_1 record
SECTION SUB_1
OFFSET SUB_OFF
LENGTH SUB_LEN
FIELDS
(N_FIELD OFFSET 0 LENGTH 2 BINARY,
SUB1_TYPE OFFSET 2 LENGTH 2 CHAR,
SUB1_PNM OFFSET 4 LENGTH 8 CHAR,
SUB1_VER OFFSET 12 LENGTH 2 CHAR,
SUB1_REL OFFSET 14 LENGTH 2 CHAR)

-- End of definition for section SUB_1

-- End of definition for record SUB_REC
;
COMMENT ON RECORD SUB_REC IS ’Definition for record with a section’;

Figure 3-7. Using the DROP statement to redefine a record

Changing log and record definitions

3-8 Tivoli Decision Support for z/OS: Language Guide and Reference



the original DEFINE RECORD statement into a data set and then used the ALTER
RECORD statement to change it, the data set would no longer contain the latest
record definition.

For example, assume you had this record definition:

You can modify fields and change record procedures using the ALTER RECORD
statement. For example, assume that you wanted to add a field called N_FIELD to
the end of section SUB_1. You could add the field using the ALTER RECORD
statement in Figure 3-9.

Executing this ALTER RECORD statement adds N_FIELD to the section SUB_1,
starting at offset 14.

-- Define SUB_REC record
DEFINE RECORD SUB_REC IN LOG SUB_LOG

IDENTIFIED BY REC_TYPE=’5’
FIELDS
(REC_LEN OFFSET 0 LENGTH 2 BINARY,
REC_TYPE OFFSET 2 LENGTH 2 CHAR,
REC_SID OFFSET 4 LENGTH 4 CHAR,
REC_DATE OFFSET 8 LENGTH 4 DATE(0CYYDDDF),
REC_TIME OFFSET 12 LENGTH 6 TIME(HHMMSS),
SUB_OFF OFFSET 18 LENGTH 2 BINARY,
SUB_LEN OFFSET 20 LENGTH 4 BINARY)

-- Define section SUB_1 record
SECTION SUB_1
OFFSET SUB_OFF
LENGTH SUB_LEN
FIELDS
(SUB1_TYPE OFFSET 0 LENGTH 2 CHAR,
SUB1_PNM OFFSET 2 LENGTH 8 CHAR,
SUB1_VER OFFSET 10 LENGTH 2 CHAR,
SUB1_REL OFFSET 12 LENGTH 2 CHAR)

-- End of definition for section SUB_1
-- End of definition for record SUB_REC
;
COMMENT ON RECORD SUB_REC IS ’Definition for record containing section’;

Figure 3-8. Sample record definition

ALTER RECORD SUB_REC
ADD FIELDS(N_FIELD OFFSET 14 LENGTH 2 BINARY) IN SECTION SUB_1;

Figure 3-9. Changing a record definition

Changing log and record definitions

Chapter 3. Defining logs and records 3-9



3-10 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 4. Updating, storing, and managing data in tables

Although it can be useful to store data from a single record type in a log data set
into a data table, you can also perform more complex tasks with data tables. For
example, you can store data from multiple record types into a data table. Then,
you can take the data from that data table, summarize it, and store the result in
another data table.

This chapter describes how to update a data table from multiple record types and
how to store data from one data table into another data table. It also explains how
to use log collector language statements to manage data within tables.

Storing data from multiple sources in a single data table
About this task

“Defining multiple record types” on page 3-5 described how to define two record
types (type A and type B) that occur in RWINFO.LOG. These log and record
definitions were used:

You want to collect data from both records and store the result in a single data
table. To do so, you must create the table and define the update process for storing
data in the data table.

-- Create the log and record definitions
DEFINE LOG RWINFO;
COMMENT ON LOG RWINFO IS ’Definition of log containing multiple records’;

-- Create record definition for Type A records
DEFINE RECORD TYPA_REC IN LOG RWINFO

IDENTIFIED BY REC_TYPE=’A’
FIELDS
(REC_TYPE OFFSET 0 LENGTH 2 CHAR,
A_NAME OFFSET 2 LENGTH 10 CHAR,
DATE OFFSET 12 LENGTH 44 DATE(0CYYDDDF),
TIME OFFSET 16 LENGTH 6 TIME(HHMMSS),
R_ERR OFFSET 22 LENGTH 4 BINARY,
W_ERR OFFSET 26 LENGTH 4 BINARY);

COMMENT ON RECORD TYPA_REC IS ’Definition for type A records’;

-- Create record definition for Type B records
DEFINE RECORD TYPB_REC IN LOG RWINFO

IDENTIFIED BY REC_TYPE=’B’
FIELDS
(REC_TYPE OFFSET 0 LENGTH 2 CHAR,
DATE OFFSET 2 LENGTH 4 DATE(0CYYDDDF),
TIME OFFSET 6 LENGTH 6 TIME(HHMMSS),
R1_ERR OFFSET 12 LENGTH 4 BINARY,
W1_ERR OFFSET 16 LENGTH 4 BINARY);

COMMENT ON RECORD TYPB_REC IS ’Definition for type B records’;

Figure 4-1. Definitions used in RWINFO.LOG

4-1



Creating the data table
About this task

The DRL.STATS_H data table is used to store the collected data. The table contains
these columns (the data is derived from both record types):
v D_DATE is the date the records are written.
v D_HOUR is the hour in the date the records are written.
v RD_ERR is the total read errors (from both record types) generated per hour.
v WR_ERR is the total write errors (from both record types) generated per hour.
v TOT_ERR is the total number of read and write errors generated per hour.

Figure 4-2 shows the SQL log collector language statement you use to create this
table.

Writing the update definition
About this task

To store data from both record types (A and B) into a single data table, use two
DEFINE UPDATE statements. Each DEFINE UPDATE statement is similar to the
one used in “Defining an update” on page 2-4:
-- Define update to store R_REC data in DRL.RWSTAT
DEFINE UPDATE TOT_ERRS

FROM R_REC
TO DRL.RWSTAT
GROUP BY
(T_DATE = DATE,
T_HOUR = HOUR(TIME))

SET
(RD_ERR = SUM(R_ERR),
WR_ERR = SUM(W_ERR),
TOT_ERR = SUM(R_ERR + W_ERR));

When you store data from more than one record type into a single data table,
follow these rules:
v All update definitions must use the same data table columns to store grouping

values. That is, the column names listed for the GROUP BY clause must be the
same for both record types.

v For example, to store data from two records in the same column, you must
accumulate that data in the same way. For example, if data from two records is
to be stored in column COL_A, enter:
COL_A = SUM(REC1_FIELD)

for the first record type. You must also use the SUM function for the field from
the second record type that is to be stored in column COL_A:
COL_A = SUM(REC2_FIELD)

-- Create a data table to store the collected data
SQL CREATE TABLE DRL.STATS_H

(D_DATE DATE,
D_HOUR SMALLINT,
RD_ERR INTEGER,
WR_ERR INTEGER,
TOT_ERR INTEGER);

Figure 4-2. Creating the DRL.STATS_H data table

Storing data from multiple sources in a single data table

4-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Figure 4-3 shows the DEFINE UPDATE statements used to collect data from both
records and to store the result in a single data table.

Based on these update definitions, data from both record types will be grouped
together by date and hour. The functions specified by the SET clause will be
applied to these groups and the result for each date and hour group will be stored
as a single row in DRL.STATS_H.

Figure 4-4 on page 4-4 shows the process used to store data from two different
records in a single data table.

-- Create update definition for TYPA_REC records
DEFINE UPDATE ALL_ERRS

FROM TYPA_REC
TO DRL.STATS_H
GROUP BY
(D_DATE = DATE,
D_HOUR = HOUR(TIME))

SET
(RD_ERR = SUM(R_ERR),
WR_ERR = SUM(W_ERR),
TOT_ERR = SUM(R_ERR + W_ERR));

-- Create update definition for TYPB_REC records
DEFINE UPDATE ALL1_ERRS

FROM TYPB_REC
TO DRL.STATS_H
GROUP BY
(D_DATE = DATE,
D_HOUR = HOUR(TIME))

SET
(RD_ERR = SUM(R1_ERR),
WR_ERR = SUM(W1_ERR),
TOT_ERR = SUM(R1_ERR + W1_ERR));

Figure 4-3. Creating multiple update definitions for a single data table

Storing data from multiple sources in a single data table

Chapter 4. Updating, storing, and managing data in tables 4-3



After you store the update definitions and collect log data, DRL.STATS_H will
contain the data in Table 4-1.

Note: The data used to produce the third row of the data table is not shown in the
log data set.

Table 4-1. Contents of DRL.STATS_H data table after collecting log data

D_DATE D_HOUR RD_ERR WR_ERR TOT_ERR

1993-01-01 1 10 10 20

1993-01-01 2 8 7 15

1993-01-01 3 7 11 18

Storing data in multiple data tables
About this task

When you collect data, you can:
v Store data about hourly activities in one data table
v Summarize the hourly activities and store the result in another data table

Figure 4-4. Processing two update definitions.

Storing data from multiple sources in a single data table

4-4 Tivoli Decision Support for z/OS: Language Guide and Reference



v Store a weekly summary in yet another data table

Storing data in one table, summarizing it, and storing the result in another table is
called a cascaded update.

Defining a cascaded update
Assume that, when you collect data and store it in DRL.STATS_H (on an hourly
basis), you also want to summarize the data on a daily basis and store the result in
another data table, called DRL.STATS_D.

To write a cascaded update definition, you must create a data table to store the
summary data. Then, you can write the update definition to store data from the
first data table into the summary data table.

Creating the summary data table
About this task

Figure 4-5 shows how to create DRL.STATS_D.

DRL.STATS_D contains these columns:
v D_DATE is the date the record was written.
v RD_ERR is the total read errors per day.
v WR_ERR is the total write errors per day.
v TOT_ERR is the total errors per day.

Defining an update for the summary table
About this task

Next, define the update process to store data from DRL.STATS_H into
DRL.STATS_D. Figure 4-6 shows the DEFINE UPDATE statement you use.

Notice that in Figure 4-6, the location of the source data (specified by the FROM
clause) is the data table DRL.STATS_H.

You specify this GROUP BY clause:

-- Creating a summary table
SQL CREATE TABLE DRL.STATS_D

(D_DATE DATE,
RD_ERR INTEGER,
WR_ERR INTEGER,
TOT_ERR INTEGER );

Figure 4-5. Creating a summary data table

DEFINE UPDATE DAY_STATS
FROM DRL.STATS_H
TO DRL.STATS_D
GROUP BY
(D_DATE = D_DATE)

SET
(RD_ERR = SUM(RD_ERR),
WR_ERR = SUM(WR_ERR),
TOT_ERR = SUM(TOT_ERR));

Figure 4-6. Updating a data table using information from another data table

Storing data in multiple data tables

Chapter 4. Updating, storing, and managing data in tables 4-5



GROUP BY
(D_DATE = D_DATE)

Based on this GROUP BY clause, the rows in DRL.STATS_H are grouped by the
D_DATE column (see “Understanding the GROUP BY clause” on page 2-4). Each
group is stored as a single row in DRL.STATS_D.

Use the SET clause to determine how the data in each group of rows from
DRL.STATS_H is processed:
SET
(RD_ERR = SUM(RD_ERR),
WR_ERR = SUM(WR_ERR),
TOT_ERR = SUM(TOT_ERR));

Figure 4-7 shows how data is stored in DRL.STATS_H, summarized by D_DATE,
and stored in DRL.STATS_D. When you perform this cascaded update, the
DRL.STATS_D table is updated using only the data entered into the DRL.STATS_H
table in the same data collection process. For example, if you start with an empty
DRL.STATS_D table and with DRL.STATS_H containing some data, then, after data
collection, DRL.STATS_D contains the summary of only the data that you just
collected. If you want to include the earlier contents of DRL.STATS_H in the
summary, use the RECALCULATE statement as discussed in “Managing data
within tables” on page 4-7.

When you collect log data, based on the update definitions in Figure 4-3 on page
4-3 and Figure 4-6 on page 4-5, DRLOUT will contain messages like those in
Figure 4-8 on page 4-7.

Figure 4-7. Cascaded update process

Storing data in multiple data tables

4-6 Tivoli Decision Support for z/OS: Language Guide and Reference



Table 4-2 shows the data stored in DRL.STATS_D after you collect data.

Table 4-2. Contents of DRL.STATS_D after collecting log data

D_DATE RD_ERR WR_ERR TOT_ERR

1993-01-01 25 28 53

Managing data within tables
About this task

You can use log collector statements to manage data contained in data tables. You
can also modify a data table and reflect modifications in other tables if they derive
data from the first table. For example, you can change data in DRL.STATS_H and
reflect the changes in DRL.STATS_D.

You can use log collector statements to:
v Delete data from tables. Use the PURGE statement to delete data from tables.

The PURGE statement performs the deletion based on the criteria you specify
with the DEFINE PURGE statement.

v Modify data within tables. You can use the RECALCULATE statement to correct
invalid data. You can also insert and delete rows using the RECALCULATE
statement.

Deleting data
About this task

You can delete data from data tables using the PURGE statement. Use the PURGE
statement when you want to regularly delete certain data from the table, such as
when you want to delete old data.

COLLECT RWINFO ;
DRL0300I Collect started at 1993-04-02-02.11.32.
DRL0302I Processing RWINFO.LOG on TSOL02.
DRL0310I A database update started after 12 records due to end of log.
DRL0313I The collect buffer was filled 0 times.
DRL0003I Consider increasing the collect buffer size.
DRL0315I Records read from the log or built by log procedure:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I TYPA_REC | 9
DRL0319I TYPB_REC | 3
DRL0318I -------------------|----------
DRL0321I Total | 12
DRL0003I
DRL0323I -------Buffer------ ------Database-----
DRL0324I Table name | Inserts Updates Inserts Updates
DRL0325I ----------------------------|----------------------------------------
DRL0326I DRL .STATS_D | 1 2 1 0
DRL0326I DRL .STATS_H | 3 9 3 0
DRL0325I ----------------------------|----------------------------------------
DRL0327I Total | 4 11 4 0
DRL0003I
DRL0301I Collect ended at 1993-04-02-02.11.36.

Figure 4-8. Messages resulting from data collection for cascaded update

Storing data in multiple data tables

Chapter 4. Updating, storing, and managing data in tables 4-7



To use the PURGE statement, you must first specify the purge conditions using the
DEFINE PURGE statement. For example, the table DRL.STATS_H stores the read
and write errors by date. Assume that you want to delete all data that is more than
14 days old.

To specify the purge condition, use the DEFINE PURGE statement in Figure 4-9.

The DEFINE PURGE statement indicates the data table for which the purge
conditions are effective. The WHERE clause on the DEFINE PURGE statement
must be a valid SQL search condition. However, the log collector must be able to
recognize its tokens.

To store a purge condition for DRL.STATS_H, use the DEFINE PURGE statement
in Figure 4-9. You can then purge data using the PURGE statement in Figure 4-10.

Executing PURGE will purge data from all tables that have a purge condition.

In Figure 4-10, you specify PURGE, but you also use the EXCLUDE clause to
exclude DRL.STATS_D from the purge. To purge data from DRL.STATS_H only,
you could also use the PURGE statement in Figure 4-11.

When you specify a table using the INCLUDE clause, only that table is processed
for the purge.

Changing data within tables
You can use the RECALCULATE statement to change data that is stored in the
data tables, and then update more tables based on the changed information.

Correcting data
Assume that you are verifying the accuracy of the data in DRL.STATS_H, which
contains the following values:

Table 4-3. Contents of DRL.STATS_H before the RECALCULATE statement is executed

D_DATE D_HOUR RD_ERR WR_ERR TOT_ERR

1993-01-01 1 10 10 20

1993-01-01 2 8 7 15

1993-01-01 3 7 11 18

DEFINE PURGE FROM DRL.STATS_H
WHERE D_DATE < CURRENT DATE - 14 DAYS;

Figure 4-9. Using the DEFINE PURGE statement

PURGE
EXCLUDE DRL.STATS_D;

Figure 4-10. Using the PURGE statement

PURGE
INCLUDE DRL.STATS_H;

Figure 4-11. Using the PURGE statement

Managing data within tables

4-8 Tivoli Decision Support for z/OS: Language Guide and Reference



You determine that the number of read errors produced in hour 3 is incorrect. The
correct number of read errors should be 4 instead of 7. So, the TOT_ERR column is
also incorrect. The total errors produced in hour 3 were 15 instead of 18.

Use the RECALCULATE statement in Figure 4-12 to correct DRL.STATS_H.

In Figure 4-12, you specify that you want to change the fields RD_ERR and
TOT_ERR in the row where D_DATE is 1993-01-01 and D_HOUR is 3. When you
execute the RECALCULATE statement, DRL.STATS_H contains the data in
Table 4-4.

Table 4-4. Contents of DRL.STATS_H after the RECALCULATE statement is executed

D_DATE D_HOUR RD_ERR WR_ERR TOT_ERR

1993-01-01 1 10 10 20

1003-01-01 2 8 7 15

1993-01-01 3 4 11 15

In the row where D_DATE is 1993-01-01 and D_HOUR is 3, RD_ERR now contains
a value of 4 and TOT_ERR has a value of 15.

In Figure 4-12, you specified RECALCULATE DRL.STATS_D. As a result, DRL.STATS_D
reflects the changed data.

Deleting and adding rows
About this task

You can delete rows from tables or add more rows to tables using the
RECALCULATE statement. For example, assume that you want to delete the
number of read errors and write errors for the row that contains an D_HOUR
column value of 3 and a D_DATE of 2000-01-01. To do so, use the RECALCULATE
statement in Figure 4-13.

The DRL.STATS_D table is also changed. However, this change never results in
rows being deleted from the DRL.STATS_D table. Even if you delete all rows for

RECALCULATE DRL.STATS_D
UPDATE DRL.STATS_H

SET
(RD_ERR = 4,
TOT_ERR = 15)

WHERE
(D_HOUR = 3
AND D_DATE = ’1993-01-01’);

Figure 4-12. Using the RECALCULATE statement

RECALCULATE
DELETE FROM DRL.STATS_H
WHERE
(D_HOUR = 3
AND D_DATE = 2001-01-01);

Figure 4-13. Deleting a row from a data table

Managing data within tables

Chapter 4. Updating, storing, and managing data in tables 4-9



the date 1993-01-01 from the DRL.STATS_H table, the DRL.STATS_D table still
contains a row for that date, with all error counts 0.

You can also insert more rows into a table. For example, assume that you want to
add the row you just deleted back into DRL.STATS_H.

Note: When you add a row into a table, you must specify the column names and
the data to go into the columns. If you leave out column names, columns (in the
order they appear in the table) must be assigned a value.

To insert a row into DRL.STATS_H, use the RECALCULATE statement in
Figure 4-14.

RECALCULATE
INSERT INTO DRL.STATS_H
(D_DATE, D_HOUR, RD_ERR, WR_ERR, TOT_ERR)
VALUES (’1993-01-01’,3,5,7,12);

Figure 4-14. Inserting a row into a data table

Managing data within tables

4-10 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 5. Defining update definitions

This chapter describes how to use update definitions to specify more complex
processing. You can write update definitions to read data from repeated sections,
compute averages and percentiles, and determine resource availability.

You want to store the information in a data table called DRL.CPUTAB that contains
these fields:
v JOB_DAY is the day portion of date.
v JOB_CNT is the number of jobs.
v AVE_CPU is the average CPU time per job.

Figure 5-1 shows the update definition used to calculate the average CPU time
used per job:

In Figure 5-1, the records are grouped by the day portion of the DATE field. The
average is determined by these lines:
SET
(AVE_CPU = AVG(JOB_CPU, JOB_CNT)
JOB_CNT = COUNT(JOB_CPU))

The AVG function calculates the average value of JOB_CPU for all records in a
group. To use the function, you have to specify a column of the target table that
will contain the number of JOB_CPU values in the group. Here, you used the
column JOB_CNT, with the value specified as COUNT(JOB_CPU).

Table 5-1 shows the results stored in DRL.CPUTAB after data collection:

Table 5-1. Contents of DRL.CPUTAB after data collection

JOB_DAY JOB_CNT AVE_CPU

1 5 1.86

2 4 1.33

3 3 1.50

4 5 2.00

Notice that the value of the column specified as the second argument of the AVG
function (like JOB_CNT here) must be defined by either the COUNT function or
the SUM function. If you specify a column with value defined by COUNT, as in
this example, the AVG function computes the ordinary average. If you specify a

DEFINE UPDATE CPU_CAL
FROM CPU_INFO
TO DRL.CPUTAB
GROUP BY
(JOB_DAY = DAY(DATE))

SET
(AVE_CPU = AVG(JOB_CPU, JOB_CNT),
JOB_CNT = COUNT(JOB_CPU));

Figure 5-1. Calculating averages

5-1



column with value defined by SUM, the AVG function computes a weighted
average. The values specified as the argument of SUM are then used as the
weights.

Using repeated sections within records
About this task

Log records often contain sections and, in many such records, sections are
repeated. The number of times a section appears in the record can be fixed, or it
can be specified by data within the record.

Assume that you want to collect statistics about data sets processed in your
subsystem. For each data set processed, the subsystem writes a section in a
REP_REC record. The section, called SUBIO, contains the data set name, the
number of blocks processed, and the size of the blocks. The number of SUBIO
sections in the record is specified by a field called SIO_OCC.

Table 5-2 shows the structure of REP_REC records:

Table 5-2. Structure of a record containing a repeated section

Field name Offset Length Data format Description

REC_TYPE 0 4 Binary Record type

REC_DATE 4 4 Packed decimal in the
format 0cyydddf

Date the record was written

REC_TIME 8 6 Character string in the
format hhmmss

Time the record was written

TOT_DSNS 14 4 Binary Total number of data sets read

SIO_OFF 18 4 Binary Offset of the first SUBIO section

SIO_LEN 22 4 Binary Length of each SUBIO section

SIO_OCC 26 4 Binary Number of SUBIO sections in the record

v
v (Other fields within the record)
v

SUBIO section (multiple occurrences of this section exist within a REP_REC record with the number of sections
specified by SIO_OCC)

SIO_DDN 0 8 Character Data set identifier

SIO_BLK 8 4 Binary Number of blocks processed in the data set

SIO_BSZ 12 4 Binary Size of the blocks

Figure 5-2 shows the location of the SUBIO sections within REP_REC.

REC_TYPE

Specifies offsetREP_REC record

REC_DATE REC_TIME TOT_DSNS SIO_OFF SIO_LEN SIO_OCC SIO_DDN

First occurrence of
SUBIO section

SIO_BLK SIO_BSZ SIO_DDN

SUBIO

SIO_BLK

Figure 5-2. A record containing a repeated section

Defining update definitions

5-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Defining a record with a repeated section
About this task

Figure 5-3 shows how to define a record that contains a repeated section.

Specifying a repeated section is similar to specifying a section that is not repeated.
To identify the section, use the SECTION clause. The value contained in the
SIO_OFF field specifies the offset of the first occurrence of this section. The value
in SIO_LEN specifies the length of each occurrence. To specify the fields in the
section, use the FIELDS clause in the same way you specify the fields in the record
itself.

To identify the section as repeated, use the REPEATED keyword.

Defining updates for records with repeated sections
About this task

You control the processing of repeated sections with the SECTION clause of the
DEFINE UPDATE statement. If you do not code the SECTION clause, the log
collectorlog collector ignores the repeated section. The records are processed in the
usual way, but your definition can only access the stem of the record that consists
of all fields outside the repeated sections.

If you code the SECTION clause, the log collectorlog collector generates an internal
record for each occurrence of the repeated section. The record contains all data
from that occurrence and all data from the record stem. The GROUP BY and SET
clauses are applied to these internal records, not to the original records from the
log.

DEFINE RECORD REP_REC IN LOG SUB_LOG
IDENTIFIED BY REC_TYPE=5
FIELDS
(REC_TYPE OFFSET 0 LENGTH 4 BINARY,
REC_DATE OFFSET 4 LENGTH 4 DATE(CYYMMDDF),
REC_TIME OFFSET 8 LENGTH 6 TIME(HHMMSS),
TOT_DSNS OFFSET 14 LENGTH 4 BINARY,
SIO_OFF OFFSET 18 LENGTH 4 BINARY,
SIO_LEN OFFSET 22 LENGTH 4 BINARY,
SIO_OCC OFFSET 26 LENGTH 4 BINARY)

-- Section definition for SUBIO section (repeated)
SECTION SUBIO
OFFSET SIO_OFF
LENGTH SIO_LEN
NUMBER SIO_OCC
REPEATED
FIELDS
(SIO_DDN OFFSET 0 LENGTH 8 CHAR,
SIO_BLK OFFSET 8 LENGTH 4 BINARY,
SIO_BSZ OFFSET 12 LENGTH 4 BINARY)

-- End of definition for repeated section SUBIO
;
COMMENT ON RECORD REP_REC IS ’A record with a repeated section’;

Figure 5-3. Defining a record with a repeated section

Using repeated sections within records

Chapter 5. Defining update definitions 5-3



Table 5-3 shows an example of REP_REC records:

Table 5-3. Examples of records with repeated section
Record stem SUBIO section (1) SUBIO section (2)

REC_
TYPE

REC_
DATE

REC_
TIME

TOT_
>DSNS

SIO_
OFF

SIO_
LEN

SIO_
OCC

SIO_
DDN

SIO_
BLK

SIO_
SIZE

SIO_
>DDN

SIO_
BLK

SIO_
SIZE

05 0990620F 065311 2 80 16 2 A_DSN 25 4096 B_DSN 75 4096

05 0990620F 092400 1 80 16 1 C_DSN 62 4096

05 0990621F 010000 2 80 16 2 B_DSN 27 4096 A_DSN 53 4096

05 0990622F 151358 2 80 16 2 A_DSN 92 4096 E_DSN 29 4096

You could not collect the total number of processed data sets by just adding a
DSNS column to the table in Table 5-7 on page 5-6 and adding a line
DSNS=SUM(TOT_DSNS) to the SET clause in Figure 5-5 on page 5-5. The column thus
specified would contain the numbers 5, 4, and 4 instead of the correct numbers 3,
2, and 2 obtained in Table 5-5 on page 5-5. This is because data from the stem is
repeated in several internal records. To collect both, the number of data sets and
the number of processed blocks, you need two update definitions, one with and
one without the SECTION clause.

Accessing data from the record stem
About this task

Assume that you want to collect the total number of data sets processed per day.
The field TOT_DSNS contains the number of data sets processed. This field is in
the record stem, not in the repeated section.

Figure 5-4 shows the DEFINE UPDATE statement used to access data in the record
stem.

In Figure 5-4, you specified the processing exactly as for records without repeated
sections. When the log collector uses this update definition, it ignores the repeated
section. The records of Table 5-3 are processed as if they looked like this:

Table 5-4. The accessible fields when SECTION is not specified

REC_TYPE REC_DATE REC_TIME TOT_DSNS SIO_OFF SIO_LEN SIO_OCC

05 0990620F 065311 2 80 16 2

05 0990620F 092400 1 80 16 1

05 0990621F 010000 2 80 16 2

05 0990622F 151358 2 80 16 2

Notice that the log collector cannot process data from the repeated sections.

DEFINE UPDATE T_DSNS
FROM REP_REC
TO DRL.TOTAL
GROUP BY
(DATE=REC_DATE)

SET
(DSNS=SUM(TOT_DSNS));

Figure 5-4. DEFINE UPDATE statement to access data in the record stem

Using repeated sections within records

5-4 Tivoli Decision Support for z/OS: Language Guide and Reference



In Figure 5-4 on page 5-4, you specified that the records are to be grouped by
REC_DATE (specified with the GROUP clause) and that the total data sets
processed per day are to be computed (specified with the SET clause).

Table 5-5 shows the results stored in DRL.TOTAL after data collection:.

Table 5-5. Contents of DRL.TOTAL after data collection

DATE DSNS

1999-06-20 3

1999-06-21 2

1999-06-22 2

Accessing data from repeated sections
About this task

Assume that you want to determine the total number of blocks read each day. This
data is stored in the SUBIO sections of each REP_REC record.

Figure 5-5 shows the DEFINE UPDATE statement used to access the data stored in
repeated sections of a record.

The SECTION SUBIO clause after the record name in Figure 5-5 states that you
want to collect data from the SUBIO sections. When the log collector uses this
update definition, it generates one internal record for each occurrence of the SUBIO
section. For the REP_REC records of Table 5-3 on page 5-4, these internal records
are:

Table 5-6. Internal records generated as a result of specifying SECTION SUBIO
REC_ TYPE REC_ DATE REC_ TIME TOT_ DSNS SIO_ OFF SIO_ LEN SIO_ OCC SIO_ DDN SIO_ BLK SIO_ SIZE

05 0990620F 065311 2 80 16 2 A_DSN 25 4096

05 0990620F 065311 2 80 16 2 B_DSN 75 4096

05 0990620F 092400 1 80 16 1 C_DSN 62 4096

05 0990621F 010000 2 80 16 2 B_DSN 27 4096

05 0990621F 010000 2 80 16 2 A_DSN 53 4096

05 0990622F 151358 2 80 16 2 A_DSN 92 4096

05 0990622F 151358 2 80 16 2 E_DSN 29 4096

Each record contains all data from one occurrence of SUBIO and all data from the
record stem. Your GROUP BY and SET clauses are applied to these records. In
Figure 5-5, you specified that the records are to be grouped by REC_DATE
(specified with the GROUP clause) and that the total blocks processed per day are
to be computed (specified with the SET clause).

Table 5-7 on page 5-6 shows the results stored in DRL.BLOCK after data collection.

DEFINE UPDATE T_BLKS
FROM REP_REC SECTION SUBIO
TO DRL.BLOCK
GROUP BY
(DATE=REC_DATE)

SET
(BLKS=SUM(SIO_BLK));

Figure 5-5. DEFINE UPDATE statement to access data in a repeated section

Using repeated sections within records

Chapter 5. Defining update definitions 5-5



Table 5-7. Contents of DRL.BLOCK after data collection

DATE BLKS

1999-06-20 162

1999-06-21 80

1999-06-22 121

Using nested sections within records
About this task

Records often contain nested sections within sections. These sections are called
subsections or nested sections. Like sections, nested sections can be repeated or
non-repeated.

Assume that you have a record similar to REP_REC. This record, called
DSERR_REC, contains nested sections within each SUBIO section that describe
errors encountered while processing data sets.

Table 5-8 shows the structure of DSERR_REC records:

Table 5-8. Structure of a record containing nested sections

Field name Offset Length Data format Description

R_TYPE 0 4 Binary Record type

R_DATE 4 4 Packed decimal in the
format 0cyydddf

Date the record was written

R_TIME 8 6 Character string in the
format hhmmss

Time the record was written

T_DSNS 14 4 Binary Total number of data sets read

S_OFF 18 4 Binary Offset of the first SUBIO section

S_OCC 22 4 Binary Number of SUBIO sections that occur in the
record

v
v (Other fields within the record)
v

SUBIO section (multiple occurrences of this section exist within a DSERR_REC record with the number of
sections specified by SIO_OCC)

S_DDN 0 8 Character Data set identifier

S_BLK 8 4 Binary Number of blocks processed in the data set

S_BSZ 12 4 Binary Size of the blocks

N_OFF 16 4 Binary Offset of the first D_ERR nested section

N_LEN 20 4 Binary Length of each D_ERR nested section

N_OCC 24 4 Binary Number of occurrences of the D_ERR
nested section

D_ERR nested section (multiple occurrences of this section exist within a SUBIO section with the number of
sections specified by N_OCC)

B_NUM 0 4 Binary Number of blocks with error

B_RC 4 4 Binary Highest return code of the error

Using repeated sections within records

5-6 Tivoli Decision Support for z/OS: Language Guide and Reference



The following figure, “Example of records containing nested sections” shows the
contents of DSERR_REC records. Note that each occurrence of the SUBIO section
has a different length, depending on the number of occurrences of D_ERR section
contained in it.

Using nested sections within records

Chapter 5. Defining update definitions 5-7



Notice that each record contains all data from one occurrence of D_ERR section, all
data from the containing occurrence of the SUBIO section, and all data from the

S
U

B
IO

 1
D

_
E

R
R

 1
D

_
E

R
R

 1
D

_
E

R
R

 2

B
_

R
C

B
_

R
C

B
_

N
U

M

B
_

N
U

M

N
_

O
C

C

N
_

L
E

N

N
_

O
F

F

S
_

S
IZ

E

S
_

B
L

K

S
_

D
D

N

B
_

R
C

B
_

N
U

M

N
_

O
C

C

N
_

L
E

N

N
_

O
F

F

S
_

S
IZ

E

S
_

B
L

K

S
_

D
D

N

S
_

O
C

C

S
_

O
F

F

T
_

D
S

N
S

R
_

T
IM

E

R
_

D
A

T
E

R
_

T
Y

P
E

S
U

B
IO

 2

0
1

6
2

0
5

5
0

2
8

2
8

4
0
9
6

7
5

B
_
D

S
N

0
2

1
2

1
8

2
8

2
5

2
8
0

2
0
5

0
6
5
3
1
1

0
0
9
3
0
6
2
0

A
_
D

S
N

4
0
9
6

S
U

B
IO

 1
D

_
E

R
R

 1
D

_
E

R
R

 1
D

_
E

R
R

 2

B
_

R
C

B
_

R
C

B
_

N
U

M

B
_

N
U

M

N
_

O
C

C

N
_

L
E

N

N
_

O
F

F

S
_

S
IZ

E

S
_

B
L

K

S
_

D
D

N

B
_

R
C

B
_

N
U

M

N
_

O
C

C

N
_

L
E

N

N
_

O
F

F

S
_

S
IZ

E

S
_

B
L

K

S
_

D
D

N

S
_

O
C

C

S
_

O
F

F

T
_

D
S

N
S

R
_

T
IM

E

R
_

D
A

T
E

R
_

T
Y

P
E

S
U

B
IO

 2

0
4

1
0

0
8

0
2

2
8

2
8

4
0
9
6

2
9

E
_
D

S
N

0
4

9
1

1
8

2
8

9
2

2
8
0

2
0
5

1
5
1
3
5
8

0
0
9
3
0
6
2
2

A
_
D

S
N

4
0
9
6

D
_

E
R

R
 1

B
_

R
C

B
_

N
U

M

S
U

B
IO

 1
D

_
E

R
R

 1

N
_

O
C

C

N
_

O
F

F
N

_
L

E
N

S
_

S
IZ

E

S
_

B
L

K

S
_

D
D

N

B
_

R
C

B
_

N
U

M

B
_

R
C

B
_

N
U

M

N
_

O
C

C

N
_

L
E

N

N
_

O
F

F

S
_

S
IZ

E

S
_

B
L

K

S
_

D
D

N

S
_

O
C

C

S
_

O
F

F

T
_

D
S

N
S

R
_

T
IM

E

R
_

D
A

T
E

R
_

T
Y

P
E

D
_

E
R

R
 2

S
U

B
IO

 2

0
3

1
7

1
2
8

8
4
0
9
6

5
3

A
_
D

S
N

1
7

9
2
4

0
5

2
8

2
8

2
7

2
8
0

2
0
5

0
1
0
0
0
0

0
0
9
3
0
6
2
1

B
_
D

S
N

4
0
9
6

S
U

B
IO

 1

N
_

O
C

C

N
_

L
E

N

N
_

O
F

F

S
_

S
IZ

E

S
_

B
L

K

S
_

D
D

N

S
_

O
C

C

S
_

O
F

F

T
_

D
S

N
S

R
_

T
IM

E

R
_

D
A

T
E

R
_

T
Y

P
E

0
0

0
6
2

1
8
0

1
0
5

0
9
2
4
0
0

0
0
9
3
0
6
2
0

C
_
D

S
N

4
0
9
6

Figure 5-6. Example of records containing nested records

Using nested sections within records

5-8 Tivoli Decision Support for z/OS: Language Guide and Reference



record stem. Your GROUP BY and SET clauses are applied to these internal
records. Table 5-9 shows the results stored in DRL.PROERR after data collection.

Table 5-9. Contents of DRL.PROERR after data collection

P_DATE TPRO_ERR

1999-06-20 124

1999-06-21 31

1999-06-22 103

Defining a record with nested sections
About this task

Figure 5-6 on page 5-8 shows how to define the DSERR_REC record shown in
Figure 5-7:

You specify a nested section like you specify a section. But notice the IN clause:

DEFINE RECORD DSERR_REC IN LOG N_LOG
IDENTIFIED BY R_TYPE = 05
FIELDS
(R_TYPE OFFSET 0 LENGTH 4 BINARY,
R_DATE OFFSET 4 LENGTH 4 DATE(CYYMMDDF),
R_TIME OFFSET 8 LENGTH 6 TIME(HHMMSS),
T_DSNS OFFSET 14 LENGTH 4 BINARY,
S_OFF OFFSET 18 LENGTH 4 BINARY,
S_OCC OFFSET 26 LENGTH 4 BINARY)

-- Section definition for SUBIO section (repeated)
SECTION SUBIO

OFFSET S_OFF
LENGTH N_OFF + N_OCC*N_LEN
NUMBER S_OCC
REPEATED
FIELDS
(S_DDN OFFSET 0 LENGTH 8 CHAR,
S_BLK OFFSET 8 LENGTH 4 BINARY,
S_BSZ OFFSET 12 LENGTH 4 BINARY,
N_OFF OFFSET 16 LENGTH 4 BINARY,
N_LEN OFFSET 20 LENGTH 4 BINARY,
N_OCC OFFSET 24 LENGTH 4 BINARY)

-- End of definition for repeated section SUBIO

-- Definition for D_ERR section (nested section)
SECTION D_ERR

IN SECTION SUBIO
OFFSET N_OFF
LENGTH N_LEN
NUMBER N_OCC
REPEATED
FIELDS
(B_NUM OFFSET 0 LENGTH 4 BINARY,
B_RC OFFSET 4 LENGTH 4 BINARY)

-- End of definition for nested section D_ERR
;
COMMENT ON RECORD DSERR_REC IS ’Record containing nested section’;

Figure 5-7. Defining a record with nested sections

Using nested sections within records

Chapter 5. Defining update definitions 5-9



SECTION D_ERR
IN SECTION SUBIO

The IN clause identifies D_ERR as a nested section, occurring in the SUBIO section.
Notice also that the length of each occurrence of SUBIO must be computed from
the number of occurrences of D_ERR within it:

LENGTH N_OFF + N_OCC*N_LEN

Accessing data in nested sections
About this task

Assume you want to determine the number of blocks that had processing errors.
Figure 5-8 shows the DEFINE UPDATE statement you use to gather the data.

The clause SECTION D_ERR after the record name in Figure 5-8 indicates that you
want to collect data from the D_ERR section of DSERR_REC record. When the log
collector uses this update definition, it generates one internal record for each
occurrence of the D_ERR section. For the DSERR_REC records shown in the
previous table “Example of records containing nested sections,” the internal
records are:

Table 5-10. Internal records generated for nested repeated section
R_

TYPE R_ DATE R_ TIME T_ DSNS
S_

OFF S_ OCC S_ DDN
S_
BLK S_ SIZE N_ OFF N_ LEN

N_
OCC

B_
NUM

 B_
RC

05 0990620F 065311 2 80 2 A_DSN 25 4096 28 8 1 12 02

05 0990620F 065311 2 80 2 B_DSN 75 4096 28 8 2 50 05

05 0990620F 065311 2 80 2 B_DSN 75 4096 28 8 2 62 01

05 0990621F 010000 2 80 2 B_DSN 27 4096 28 8 2 05 24

05 0990621F 010000 2 80 2 B_DSN 27 4096 28 8 2 9 17

05 0990621F 010000 2 80 2 A_DSN 53 4096 28 8 1 17 03

05 0990622F 151358 2 80 2 A_DSN 92 4096 28 8 1 91 04

05 0990622F 151358 2 80 2 E_DSN 29 4096 28 8 2 02 08

05 0990622F 151358 2 80 2 E_DSN 29 4096 28 8 2 10 04

Understanding how to access data from records with sections
When you specify processing of a repeated section using the SECTION clause of
the DEFINE UPDATE statement, the log collector generates an internal record for
each occurrence of that repeated section. Your GROUP BY and SET clauses are
then applied to these internal records, rather than records from the log.

Each internal record contains fields from one occurrence of the specified repeated
section. It also contains fields from all sections containing that occurrence, from the
record stem, and from certain non-repeated subsections.

DEFINE UPDATE E_DSNS
FROM DSERR_REC SECTION D_ERR
TO DRL.PROERR
GROUP BY
(P_DATE=R_DATE)

SET
(TPRO_ERR=SUM(B_NUM));

Figure 5-8. DEFINE UPDATE statement to access nested sections in a record

Using nested sections within records

5-10 Tivoli Decision Support for z/OS: Language Guide and Reference



Figure 5-9 shows a record of type REC with different kinds of sections.

The record contains these sections:

A A non-repeated section.

B A repeated section that contains a nested non-repeated section (D).

C A repeated section that contains a nested repeated section (E).

D A non-repeated section contained in section B. Section D is present only in
the first occurrence of section B.

E A nested repeated section contained in C. Two occurrences of section E are
contained in the first occurrence of section C, and three occurrences of
section E are contained in the second occurrence of section C.

The different parts of the record in Figure 5-9 are:

R Fields in the record.

A Fields in section A.

B1 Fields in the first occurrence of section B.

B2 Fields in the second occurrence of section B.

C1 Fields in the first occurrence of section C.

C2 Fields in the second occurrence of section C.

D1 Fields in subsection D in the first occurrence of B.

E11 Fields in the first occurrence of E in the first occurrence of C.
...

E23 Fields in the third occurrence of E in the second occurrence of C.

Figure 5-10 on page 5-12 shows the internal records generated by the log collector,
depending on the SECTION clause.

R A

A B(1) B(2)
section occurrences

C(1) C(2)

B1 B2 C1 E11 E12 C2 E21 E22 E23D1

Figure 5-9. Example of a record with different kinds of sections

Understanding how to access data from records with sections

Chapter 5. Defining update definitions 5-11



To find out which fields are included in the generated records, you can use the
following method. Represent sections in the record by a tree structure as in
Figure 5-11 on page 5-13. The top node represents the record, and the remaining
nodes represent the repeated sections. Each node includes its non-repeated
subsections. A line such as from C to E shows that E is a subsection of C.

Figure 5-10. Data available for collection, depending on SECTION clause

Understanding how to access data from records with sections

5-12 Tivoli Decision Support for z/OS: Language Guide and Reference



Your SECTION clause specifies one of the repeated sections. This repeated section
is represented by one of the nodes of the tree. The internal records generated for
this section contain all fields from the sections represented by that node and by all
nodes on the path leading upwards.

Obtaining a section occurrence number
When processing any of the internal records generated from a repeated section,
you can use the SECTNUM function to identify the occurrence of each section
included in the record. The function returns the occurrence number of the specified
section within its containing section. If you apply the SECTNUM function to a
non-repeated section, the result is always either 1 (if the section is present) or 0 (if
the section is absent).

As an example, Figure 5-12 shows the result of SECTNUM for different records
from Figure 5-10 on page 5-12:

R + A

B + D C

E

Figure 5-11. Tree structure of a record with repeated sections

R

R

R

R

R

R

R

A

A

A

A

A

A

A

B2 SECTNUM(A)=1 SECTNUM(B)=2 SECTNUM(D)=0

B1 SECTNUM(A)=1 SECTNUM(B)=1 SECTNUM(D)=1D1D1

C1 SECTNUM(A)=1 SECTNUM(C)=1 SECTNUM(E)=1

C1 SECTNUM(A)=1 SECTNUM(C)=1 SECTNUM(E)=2

C2 SECTNUM(A)=1 SECTNUM(C)=2 SECTNUM(E)=1

C2 SECTNUM(A)=1 SECTNUM(C)=2 SECTNUM(E)=2

C2 SECTNUM(A)=1 SECTNUM(C)=2 SECTNUM(E)=3

E11

E12

E21

E22

E23

Figure 5-12. Result of SECTNUM for different internal records

Understanding how to access data from records with sections

Chapter 5. Defining update definitions 5-13



Accessing specific sections in a record
When processing the internal records generated for repeated sections, you can
access the fields of the original record using the FIELD function. For example, you
can obtain the contents of the field E_FIELD in the occurrence E23 of section E by
writing:
FIELD(E_FIELD,2,3)

Each of the two indexes (2 and 3) refers to one level of nested repeated sections
containing the field. The field E_FIELD is contained in two levels of repeated
sections, C and E. The index 2 identifies the second occurrence of C, and the
index 3 identifies the third occurrence of E (within that second occurrence of C).
To specify a field D_FIELD in D1, write:
FIELD(D_FIELD,1)

Section D is contained in only one level of repeated sections (B). The index 1
identifies the first occurrence of B.

You can also specify an asterisk (*) as an index in the FIELD function. An asterisk
specifies the occurrence contained in the currently processed internal record. For
example:
FIELD(E_FIELD,*,3)

means the field E_FIELD in E23 when the log collector processes the record
generated for C2. When the log collector processes the record for C1, it means the
field in E13, and yields a null value as the result, because E13 does not exist.

Note: The indexes need not be constants as in the examples; they may be any
expressions referring to the fields of the record.

The log collector actually generates the internal records for repeated sections by
selecting portions of the original record, and not by constructing new records. So,
generating these records does not result in a performance penalty.

However, accessing fields with the FIELD function has a definite price in
performance, because the log collector recalculates section lengths and offsets each
time it executes the FIELD function.

Determining averages
You can use the DEFINE UPDATE statement to determine averages. Assume that
you want to determine the average amount of CPU time used per job. The records
that contain this information are of type CPU_INFO and contain the data shown in
Table 5-11:

Table 5-11. Contents of CPU_INFO records

DATE JOB_ID JOB_CPU

00006231F 4546 2.5

00006231F 5367 1.7

00006231F 5893 1.9

00006231F 6192 1.3

00006231F 7338 1.9

00006232F 1600 .8

Understanding how to access data from records with sections

5-14 Tivoli Decision Support for z/OS: Language Guide and Reference



Table 5-11. Contents of CPU_INFO records (continued)

DATE JOB_ID JOB_CPU

00006232F 1775 2.1

00006232F 1990 1.4

00006232F 2222 1.0

00006233F 1752 1.1

00006233F 3193 1.9

00006233F 4000 1.5

00006234F 1655 1.7

00006234F 1883 2.3

00006234F 2122 2.0

00006234F 2775 2.3

00006234F 5721 1.7

Determining percentiles
You can use the DEFINE UPDATE statement to determine percentiles. You might
need to know, for example, whether 95% of the transactions for a particular
application have a response time of less than 1 second.

Assume that you have these records in a log data set:

DATE TIME APPL_ID TRANS_NO RES_TIME

0990305F 090901 APP_A 1332 .33

0990305F 111022 APP_A 2110 .95

0990305F 131500 APP_A 2413 .24

0990305F 150020 APP_A 4010 .99

0990305F 164315 APP_A 5121 .75

0990305F 185307 APP_A 6567 .53

0990305F 190000 APP_A 6800 .46

0990305F 211908 APP_A 7548 .39

0990305F 221500 APP_A 8812 .57

0990305F 230000 APP_A 9325 .37

0990305F 231912 APP_A 9794 .39

You want to determine which response time represents the 95th percentile for your
transactions. You want to store the resulting data in a data table called DRL.RTIME
that has these columns:
v T_DATE is the date of the transactions.
v T_APPL is the application name.
v NUM_RESP is the total number of responses per date.
v RESP_95 is the 95th percentile of response per date.

Figure 5-13 on page 5-16 shows the update definition used to determine the 95th
percentile.

Determining averages

Chapter 5. Defining update definitions 5-15



The 95th percentile is determined using these lines:
SET
(NUM_RESP = COUNT(RES_TIME)
RESP_95 = PERCENTILE(RES_TIME,NUM_RESP,95))

The PERCENTILE function returns the response time that is the 95th percentile of
all response times within the group. To use the PERCENTILE function, you must
specify a column of the target table that will contain the number of RES_TIME
values in the group. Here, you used the column NUM_RESP, with the value
specified as COUNT(RES_TIME).

Because you are grouping records by date and application, the percentile function
uses all response times recorded for a specific application on a given date.

Table 5-12 shows the results stored in DRL.RTIME after data collection.

Table 5-12. Contents of DRL.RTIME

T_DATE T_APPL NUM_RESP RESP_95

1999-03-05 APP_A 11 .97

Note: When using the PERCENTILE function, you should process all input values
at the same time. Processing input values during different data collections gives
average percentiles of each collect, rather than one overall percentile.

Distributing measurements
Many times, you want to determine statistics over specific periods, such as clock
hours. You know the statistics over an interval, which does not coincide with any
of these periods, and may contain several periods. You can use the DISTRIBUTE
clause of the DEFINE UPDATE statement to distribute the interval statistics evenly
over the periods.

For example, assume that you know the amount of CPU time used per job.
Table 5-13 shows CPU_IN records that contain this data. Notice that the jobs take
several hours and do not start or end at a full hour.

Table 5-13. CPU_IN records containing data to be distributed

APPL STA_DTE STA_TME END_DTE END_TME CPU_TME

APP_A 0990705F 163000 0990705F 193000 36.0

APP_A 0990705F 204500 0990705F 234500 18.0

DEFINE UPDATE DET_PERT
FROM RESP_DATA
TO DRL.RTIME
GROUP BY
(T_DATE = DATE,
T_APPL = APPL_ID)

SET
(NUM_RESP = COUNT(RES_TIME),
RESP_95 = PERCENTILE(RES_TIME,NUM_RESP,95));

Figure 5-13. Calculating the 95th percentile

Determining percentiles

5-16 Tivoli Decision Support for z/OS: Language Guide and Reference



You want to determine the amount of CPU time used each hour (assuming the
CPU time is used at an even rate throughout the job). You want to store this data
in a table called DRL.DIST that contains these columns:
v DATE is the date of the period.
v HOUR is the hour of the period.
v CPU_TIME is the CPU time used during the period.
v USAGE is the total number of seconds that different jobs were running during

the period.

Figure 5-14 shows how to distribute the CPU time contained in CPU_IN records:

The clause BY 3600 in Figure 5-14 specifies the periods as consecutive one-hour
(3600-second) periods starting at midnight. To specify the start and end of the
interval that you want to distribute, you use the START and END clauses. In
Figure 5-14, you specify the start of the interval using the TIMESTAMP function,
which produces a timestamp from the starting date (STA_DTE) and starting time
(STA_TIME) fields. You specify the end of the interval using the TIMESTAMP
function to produce a timestamp from the ending date (END_DTE) and ending
time (END_TME) fields.

When the log collector executes the DISTRIBUTE clause, it first splits each interval
at the period boundaries. Then, it generates one internal record for each part
resulting from the split.

DEFINE UPDATE DIST_CPU
FROM CPU_IN
TO DRL.DIST
DISTRIBUTE CPU_TIME

BY 3600
START TIMESTAMP(STA_DTE,STA_TME)
END TIMESTAME(END_DTE,END_TME)
TIMESTAMP CUR_TME
INTERVAL CUR_DUR

GROUP BY
(DATE = DATE(CUR_TIME),
HOUR = HOUR(CUR_TIME))

SET
(CPU_TIME = SUM(CPU_TME),
USAGE = SUM(CUR_DUR));

Figure 5-14. Creating an update definition for measurement distribution

16.30

part 1 part 2

INTERVAL

part 3 part 4

16.00 17.00 18.00 19.00 20.00

19.30

Figure 5-15. Splitting the interval at one-hour boundaries

Distributing measurements

Chapter 5. Defining update definitions 5-17



Figure 5-15 on page 5-17 illustrates the process of splitting the interval from the
first record of Table 5-13 on page 5-16. When the log collector processes the records
shown in Table 5-13 on page 5-16, it generates these internal records:

Each internal record contains the same fields as the original record. The values of
fields you have listed after the keyword DISTRIBUTE (CPU_TIME in this case) are
distributed proportionally to the length of the part represented by the row. The
contents of the remaining fields are copied unchanged from the original record.

Each record also contains two more fields: CUR_TIME and CUR_DUR. They
contain, respectively, the start and length of the part represented by the row. You
specify the names of these columns using the TIMESTAMP and INTERVAL clauses.

Your GROUP BY and SET clauses are applied to the internal records and the result
is used to update the data table.

Table 5-14 shows the results stored in DRL.DIST after data collection.

Table 5-14. Contents of DRL.DIST after data collection

DATE HOUR CPU_TIME USAGE

1999-07-05 16 6.0 1800

1999-07-05 17 12.0 3600

1999-07-05 18 12.0 3600

1999-07-05 19 6.0 1800

1999-07-05 20 1.5 900

1999-07-05 21 6.0 3600

1999-07-05 22 6.0 3600

1999-07-05 23 4.5 2700

Determining resource availability
An important aspect of system performance management is the ability to
determine the availability of a particular resource at any given time and the ability
to compare that availability with the scheduled availability of the resource.

Typically, information about the availability of a resource comes from several
different sources. For example, you can determine that a particular resource is
available, or up, if that resource is being used by a job running in your system, if
the resource is using CPU time, or if it is producing messages from transactions. If

100187F
100187F
100187F
100187F

100187F
100187F
100187F
100187F

100187F
100187F
100187F
100187F

100187F
100187F
100187F
100187F

163000
163000
163000
163000

204500
204500
204500
204500

193000
193000
193000
193000

234500
234500
234500
234500

2000-07-05-16.30.00
2000-07-05-17.00.00
2000-07-05-18.00.00
2000-07-05-19.00.00

2000-07-05-20.45.00
2000-07-05-21.00.00
2000-07-05-22.00.00
2000-07-05-23.00.00

1800
3600
3600
1800

900
3600
3600
2700

First input record
produces these records

Second input record
produces these records

6.0
12.0
12.0
6.0

1.5
6.0
6.0
4.5

STA_DTE STA_TME END_TME CPU_TIME CUR_TIME CUR_DUREND_DTE

Distributing measurements

5-18 Tivoli Decision Support for z/OS: Language Guide and Reference



applications are trying to use a particular resource and generating error messages
showing that they could not use it, the resource is unavailable or down.

Using the MERGE clause of the DEFINE UPDATE statement, you can put all this
information together to obtain the status of the resource at different times. You
may think of this process as reconstructing facts from different pieces of evidence.
This evidence is usually incomplete, or even conflicting, and the log collector
must make assumptions that conform best to the collected data.

Assume that you want to determine the availability of certain resources (such as
database servers), using data stored in log files of type RES_DATA. A log of type
RES_DATA contains these records:
v Records of type A, which contain data about jobs using a resource.
v Records of type B, which are written when an application attempts to access a

resource and receives no answer before the timeout period.
v Records of type C, which are created whenever a resource is started by the

system operator.

Records of type A have this layout:

Table 5-15. Layout of Type A records (RES_DATA_A)

Field name Offset Length Data format Description

REC_TYPE 0 1 Character Character string A.

RESOURCE 2 8 Character Resource name.

START_DATE 12 6 Character Start date of job using the resource, in format yymmdd.

START_TIME 20 6 Character Start time of job using the resource, in format hhmmss.

END_DATE 28 6 Character End date of job using the resource, in format yymmdd.

END_TIME 36 6 Character End time of job using the resource, in format hhmmss.

Records of type B have this layout:

Table 5-16. Layout of Type B records (RES_DATA_B)

Field name Offset Length Data format Description

REC_TYPE 0 1 Character Character string B.

RESOURCE 2 8 Character Resource name.

DATE 12 6 Character Date of attempted access, in format yymmdd.

TIME 20 6 Character Time of attempted access, in format hhmmss.

TIMEOUT 28 6 Character Time, in seconds, that the application waited without
obtaining a response.

Records of type C have this layout:

Table 5-17. Layout of Type C records (RES_DATA_C)

Field name Offset Length Data format Description

REC_TYPE 0 1 Character Character string C.

RESOURCE 2 8 Character Resource name.

START_DATE 12 6 Character Date the resource was started, in format yymmdd.

START_TIME 20 6 Character Time the resource was started, in format hhmmss.

Determining resource availability

Chapter 5. Defining update definitions 5-19



A log file containing these records might look like this:

All records in this log contain data about the same resource, namely DBSERV1,
during the same day, namely June 23, 1999. (A log normally contains data about
many resources, and may cover more than one day.) Reading the log, you can
reason like this to establish the availability of DBSERV1 at different times:

Record number 1
Shows that DBSERV1 was started at 01.00. After this, it must have been up
for at least some short time. Nothing is then known about DBSERV1 until
04.00.

Record number 2
Shows that a job was using DBSERV1 from 04.00 through 06.00, and record
number 3 indicates that another job was using it from 05.00 through 07.00.
These two records together provide evidence that DBSERV1 was up all the
time from 04.00 to 07.00.

Record number 4
Shows that at 08.00, an application attempted to use DBSERV1 and did not
receive any answer for the subsequent 30 minutes. This provides evidence
that the resource was down from 08.00 to 08.30, but you cannot tell exactly
when it went down. Record number 5 indicates that the operator restarted
DBSERV1 at 10.00, but the interval from 08.30 to 10.00 is too long to
conclude that DBSERV1 was down all that time.

Records number 6 and 7
Show that DBSERV1 was up from 13.00 to 14.00 and then from 14.20 to
15.00. Although you do not have any positive evidence for the 20 minute
period between 14.00 and 14.20, it seems likely that DBSERV1 was up
during that time; you may assume that it was up all the time from 13.00 to
15.00.

Records number 8 and 9
Show that DBSERV1 was restarted at 18.00 and then used from 18.20
through 19.00. Again, you may assume that DBSERV1 was up during the
20 minute interval for which you have no positive evidence.

Figure 5-17 on page 5-21 illustrates the availability of DBSERV1 thus obtained from
the log. A double line (==) represents the resource being up, and crosses (XX)
represent the resource being down. A vertical bar (|) represents a change of status.
Blank spaces represent unknown status.

record 1: C DBSERV1 990623 010000
record 2: A DBSERV1 990623 040000 990623 060000
record 3: A DBSERV1 990623 050000 990623 070000
record 4: B DBSERV1 990623 080000 1800
record 5: C DBSERV1 990623 100000
record 6: A DBSERV1 990623 130000 990623 140000
record 7: A DBSERV1 990623 141999 990623 150000
record 8: C DBSERV1 990623 180000
record 9: A DBSERV1 990623 181999 990623 190000

Figure 5-16. Log file containing RES_DATA records

Determining resource availability

5-20 Tivoli Decision Support for z/OS: Language Guide and Reference



When the log collector processes a RES_DATA log, it works in essentially the same
way. At the end, it stores the resulting availability data in a database table. The
table containing these data might look as follows:

Table 5-18. Data table DRLAVAIL_STATUS: an example of availability data

RES_ID TYPE INT_START INT_END QUIET

DBSERV1 1999-06-23-00.00.00 1999-06-23-01.00.00 0

DBSERV1 |== 1999-06-23-01.00.00 1999-06-23-01.00.01 3600

DBSERV1 1999-06-23-01.00.01 1999-06-23-04.00.00 0

DBSERV1 === 1999-06-23-04.00.00 1999-06-23-07.00.00 1800

DBSERV1 1999-06-23-07.00.00 1999-06-23-08.00.00 0

DBSERV1 XXX 1999-06-23-08.00.00 1999-06-23-08.30.00 0

DBSERV1 1999-06-23-08.30.00 1999-06-23-10.00.00 0

DBSERV1 |== 1999-06-23-10.00.00 1999-06-23-10.00.01 3600

DBSERV1 1999-06-23-10.00.01 1999-06-23-13.00.00 0

DBSERV1 === 1999-06-23-13.00.00 1999-06-23-15.00.00 1800

DBSERV1 1999-06-23-15.00.00 1999-06-23-18.00.00 0

DBSERV1 |== 1999-06-23-18.00.00 1999-06-23-19.00.00 1800

DBSERV1 1999-06-23-19.00.00 1999-06-23-24.00.00 0

Each row of the table corresponds to one interval in the figure illustrating the
availability. The columns INT_START and INT_END contain the start and end of
an interval, stored as timestamps. (For readability, the timestamps are shown
without the microsecond part.) The column TYPE contains a three-character code
representing the interval type. This code is similar to the symbols used in the
figure. The possible codes are listed in Table 5-19:

Table 5-19. Interval type codes for resource availability

Interval type Resource status
Resource status at
start

Resource status at
end

=== Up Active Active

|== Up Started Active

==| Up Active Stopped

|=| Up Started Stopped

XXX Down Inactive Inactive

|XX Down Stopped Inactive

XX| Down Inactive Started

|X| Down Stopped Started

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

XX= = =================== =========

Figure 5-17. Availability of DBSERV1 between 00.00 and 24.00 on June 23, 1999

Determining resource availability

Chapter 5. Defining update definitions 5-21



The column QUIET contains additional information needed by the log collector to
process the evidence that may come at a later time. It is used to bridge the gaps
such as between the log records number 6 and 7, or 8 and 9. The number in the
column is the maximum length, in seconds, of the gap that can be so bridged. For
example, the number 1800 in the fourth row in Table 5-18 on page 5-21 means:

If, in the future, you receive evidence that DBSERV1 was up at any time between 07.00
and 07.00 plus 1800 seconds (that is, between 07.00 and 07.30), you may assume it was
up all the time between 07.00 and that instant.

The number in the column QUIET can be seen as the likely length of a “quiet”
period when the resource is not used, and therefore cannot provide any evidence
of its status.

The table in the example contains availability data for only one resource, but
normally contains data for many resources. The column RES_ID then identifies the
resource.

To process a RES_DATA log in the way described, and obtain the availability data
shown in Table 5-18 on page 5-21, you must provide suitable instructions to the log
collector. These instructions have the form of three update definitions, one for each
record type. These update definitions might look like this:

In each of the three updates, you specified grouping of the records by RESOURCE.
As a result, the records are grouped so that each group consists of records

DEFINE UPDATE AVAIL_A
FROM RES_DATA_A
TO DRL.AVAIL_STATUS
GROUP BY
(RES_ID = RESOURCE)

MERGE
(TYPE = ’===’,
INT_START = TIMESTAMP(START_DATE,START_TIME),
INT_END = TIMESTAMP(END_DATE,END_TIME),
QUIET = 1800);

DEFINE UPDATE AVAIL_B
FROM RES_DATA_B
TO DRL.AVAIL_STATUS
GROUP BY
(RES_ID = RESOURCE)

MERGE
(TYPE = ’XXX’,
INT_START = TIMESTAMP(DATE,TIME),
INT_END = TIMESTAMP(DATE,TIME) + TIMEOUT SECONDS,
QUIET = 0);

DEFINE UPDATE AVAIL_C
FROM RES_DATA_C
TO DRL.AVAIL_STATUS
GROUP BY
(RES_ID = RESOURCE)

MERGE
(TYPE = ’|==’,
INT_START = TIMESTAMP(START_DATE,START_TIME),
INT_END = TIMESTAMP(START_DATE,START_TIME) + 1 SECOND,
QUIET = 3600);

Figure 5-18. Using the MERGE clause

Determining resource availability

5-22 Tivoli Decision Support for z/OS: Language Guide and Reference



containing information about the same resource. The MERGE clause is then
applied to each such group of records to derive the availability information.
Because all three update definitions specify the same target table, the information
from all three types of records is combined together before it is stored in the table.

Notice that the MERGE clause generates several rows for each group (for example,
all rows in DRL.AVAIL_STATUS are generated from the same group). In this
respect, the MERGE clause is different from the SET clause, which summarizes
each group in a single row.

Understanding the MERGE clause
The MERGE clause derives from each record an interval similar to those in the
DRL.AVAIL_STATUS table. The intervals thus obtained are merged to obtain the
final result.

The way the interval is derived from a record depends on the record type. A
record of type A is evidence that the resource was up from the start of a job at
START_DATE, START_TIME to the end of the job at END_DATE, END_TIME. This
is represented as an “up” interval (===) between these two points of time. The
MERGE clause for records of type A specifies that interval, for example:
MERGE
(TYPE = ’===’,
INT_START = TIMESTAMP(START_DATE,START_TIME),
INT_END = TIMESTAMP(END_DATE,END_TIME),
QUIET = 1800);

The expressions to the right of the equal signs specify the interval. The first
expression specifies the interval type. The second and the third expression specify
the start and end of the interval. The fourth expression specifies the quiet period.
(The start and end of the interval must be specified as timestamps; the
TIMESTAMP function constructs the timestamp from date and time. Table 5-19 on
page 5-21 lists the possible interval type codes.)

The names to the left of the equal signs in the MERGE clause are names of
columns in the target table that receive the specified values. These columns must
be the same in all three update definitions.

A record of type B is evidence that the resource was down for TIMEOUT seconds
starting at DATE, TIME. This is represented as a “down” interval (XXX), in this
way:
MERGE
(TYPE = ’XXX’,
INT_START = TIMESTAMP(DATE,TIME),
INT_END = TIMESTAMP(DATE,TIME) + TIMEOUT SECONDS,
QUIET = 0);

A record of type C is evidence that at START_DATE, START_TIME, the resource
changed status from “down” to “up”, and then was up for some time, perhaps one
second, but possibly much more. This is represented as a one-second interval of
type |== with a long quiet period:
MERGE
(TYPE = ’|==’,
INT_START = TIMESTAMP(START_DATE,START_TIME),
INT_END = TIMESTAMP(START_DATE,START_TIME) + 1 SECOND,
QUIET = 3600);

Determining resource availability

Chapter 5. Defining update definitions 5-23



Figure 5-19 shows the process of merging the intervals derived from the individual
records. A single line (----) in the figure represents quiet periods.

Comparing actual availability to scheduled availability
After determining the actual availability of the resource as thoroughly as possible
based on collected data, you can compare that availability with the scheduled
availability for the resource.

The scheduled availability is stored in a table named DRLSYS.SCHEDULE. This
table is a control table and should be set up by your system administrator. (For
more information about control tables, refer to the Administration Guide.)

The DRLSYS.SCHEDULE table contains schedules. A schedule specifies the periods
during the day when a resource is scheduled to be available. For example, the
table on your system might contain the information shown in Table 5-20.

Table 5-20. Example of a schedule in DRLSYS.SCHEDULE table

SCHEDULE_NAME DAY_TYPE START_TIME END_TIME

STANDARD MON 08.00.00 11.00.00

STANDARD MON 12.00.00 17.00.00

v
v (Other rows for each day of the week)
v

STANDARD FRI 08.00.00 17.00.00

STANDARD SUN 02.00.00 22.00.00

STANDARD HOLIDAY 02.00.00 22.00.00

You can read in the table that, for example, the schedule named STANDARD
requires a resource to be available from 08.00.00 to 11.00.00 and from 12.00.00 to
17.00.00 on Mondays, from 08.00.00 to 17.00.00 on Tuesdays, and so on. (The codes
appearing in the DAY_TYPE column are the so-called day types. For more
information on day types, see the description of the DAYTYPE function.)

00   01  02   03  04   05   06  07   08  09   10   11   12  13   14  15   16  17   18   19  20   21  22   23   24

records

1

2

3

XX

XX 4

5

6

7

8

9

=---

=---

merged =---

=---

====--

====--

====--

=---

==--

===============--

=========--

=========--

==========--

Figure 5-19. Merging of intervals derived from the records

Determining resource availability

5-24 Tivoli Decision Support for z/OS: Language Guide and Reference



Assume that you have a table DRL.AVAIL_STATUS, containing availability data as
shown in Table 5-18 on page 5-21. Assume that the schedules at your installation
are defined by the above DRLSYS.SCHEDULE table. You want to compute the
total number of seconds that each resource was up when it was scheduled to be
up. You want to store the result in a data table called DRL.AVAIL_IN_SCHED that
has these columns:

Column
Contains

DTE A date.
RESRCE

The name of a resource.
UP_TIME

The number of seconds the resource was up within the schedule on that
date.

Assume further that June 23, 1999 is of type FRI (it is a Friday). This figure shows
the schedule for June 23, 1999 together with the availability data for that day:

To summarize the up time within the schedule, use this update definition:

Understanding the APPLY SCHEDULE clause
When executing the update definition shown above, the log collector first creates a
temporary internal table. This table is a copy of the source table, with two
modifications:
v The intervals that cross the boundary between the schedule periods are split at

these boundaries.
v An additional column indicates if the interval is within the schedule.

00   01  02   03  04   05   06  07   08  09   10   11   12  13   14  15   16  17   18   19  20   21  22   23   24

SCHEDULED UP TIME

XX= = ================= =========

Figure 5-20. Status of the resource and the schedule for June 23, 1999

DEFINE UPDATE APPLY_SCHEDULE
FROM DRL.AVAIL_STATUS
TO DRL.AVAIL_IN_SCHED
APPLY SCHEDULE ’STANDARD’

TO TYPE, INT_START, INT_END
STATUS SCHED

GROUP BY
(DTE = DATE(INT_START),
RESRCE = RES_ID)

SET
(UP_TIME = SUM(CASE

WHEN SUBSTR(TYPE,2,1) = ’=’
AND SCHED = ’=’
THEN INTERVAL(INT_START,INT_END)

END));

Figure 5-21. Using the APPLY SCHEDULE clause

Determining resource availability

Chapter 5. Defining update definitions 5-25



You requested creation of the temporary table by means of these lines:
APPLY SCHEDULE ’STANDARD’

TO TYPE, INT_START, INT_END
STATUS SCHED

In the first line, you identified the schedule to be used.

In the second line, you specified where to find the availability data. The three
names listed after the keyword TO are the names of columns that contain,
respectively, the interval type code, the interval start, and the interval end.

In the last line, you specified the name for the column added to indicate the status,
within or outside the schedule. It is the name appearing after the keyword
STATUS.

The temporary internal table for the availability data of Table 5-18 on page 5-21 is
shown below. Notice that an interval was split at 17.00. An equal sign (=) in the
STATUS column indicates an interval within the schedule, and an X indicates an
interval outside the schedule.

Table 5-21. Temporary internal table created by APPLY SCHEDULE

RES_ID TYPE INT_START INT_END QUIET SCHED

DBSERV1 1999-06-23-00.00.00 1999-06-23-01.00.00 0 X

DBSERV1 |== 1999-06-23-01.00.00 1999-06-23-01.00.01 1800 X

DBSERV1 1999-06-23-01.00.01 1999-06-23-04.00.00 0 X

DBSERV1 === 1999-06-23-04.00.00 1999-06-23-07.00.00 1800 X

DBSERV1 1999-06-23-07.00.00 1999-06-23-08.00.00 0 X

DBSERV1 XXX 1999-06-23-08.00.00 1999-06-23-08.30.00 0 =

DBSERV1 1999-06-23-08.30.00 1999-06-23-10.00.00 0 =

DBSERV1 |== 1999-06-23-10.00.00 1999-06-23-10.00.01 1800 =

DBSERV1 1999-06-23-10.00.01 1999-06-23-13.00.00 0 =

DBSERV1 === 1999-06-23-13.00.00 1999-06-23-15.00.00 1800 =

DBSERV1 1999-06-23-15.00.00 1999-06-23-17.00.00 0 =

DBSERV1 1999-06-23-17.00.00 1999-06-23-18.00.00 0 X

DBSERV1 |== 1999-06-23-18.00.00 1999-06-23-19.00.00 1200 X

DBSERV1 1999-06-23-19.00.00 1999-06-23-24.00.00 0 X

Your GROUP BY and SET clauses are applied to the internal table. You specified
grouping by date and resource:
GROUP BY
(DTE = DATE(INT_START),
RESRCE = RES_ID)

Your SET clause specifies how to compute the total up time within the schedule:
SET
(UP_TIME = SUM(CASE

WHEN SUBSTR(TYPE,2,1) = ’=’
AND SCHED = ’=’
THEN INTERVAL(INT_START,INT_END)

END));

Determining resource availability

5-26 Tivoli Decision Support for z/OS: Language Guide and Reference



The CASE expression tests whether the middle character in TYPE is an equal sign
(meaning an up interval), and whether the interval is within the schedule. If both
conditions are true, the result of CASE is the number of seconds between
INT_START and INT_END, computed using the INTERVAL function. Otherwise,
the result of CASE is a null value, meaning no data. The SUM function ignores the
null values; its result is thus the total up time within the schedule.

The contents of the table DRL.AVAIL_IN_SCHED after data collection are:

Table 5-22. Contents of the DRL.AVAIL_IN_SCHEDULE table after data collection

DTE RESRCE UP_TIME

1999-06-23 DBSERV1 7201

Changing and deleting update definitions
You can modify update definitions after you have stored them using:
v The DROP statement to delete the existing update definition and using the

DEFINE UPDATE statement to create a new update definition
v The ALTER UPDATE statement to change an update definition

Using the DROP statement to delete an update definition
About this task

You can use the DROP statement to delete a stored update definition. For example,
assume that you wanted to delete a stored update definition, called UPD_DEF. To
delete the definition, use this statement:
DROP UPD_DEF;

You can also use the DROP statement in combination with the DEFINE UPDATE
statement to change a stored definition.

Assume that R_REC records contain fields that you did not use when you defined
an update using the record. These fields are:
v TOTR_ATT contains the total read attempts.
v TOTW_ATT contains the total write attempts.

You want to collect data from these fields and store it in these columns of
DRL.RWSTAT:
v R_ATT is the number of read attempts.
v W_ATT is the number of write attempts.
v TOT_ATT is the total number of read and write attempts.

Figure 5-22 on page 5-28 shows how to use the DROP and DEFINE UPDATE
statements to replace the stored update definition.

Determining resource availability

Chapter 5. Defining update definitions 5-27



In Figure 5-22, you specified that the update definition TOT_ERRS should be
deleted, using DROP UPDATE TOT_ERRS. You can then modify the definition and
execute the statement again.

Using the ALTER UPDATE statement
About this task

You can also use the ALTER UPDATE statement to change the update definition
TOT_ERRS. However, you should usually use the ALTER UPDATE statement
when you must make quick changes. The reason is that when you use the ALTER
UPDATE statement, you cannot see the remainder of the original DEFINE
UPDATE statement you created.

To store the additional data in columns R_ATT, W_ATT, and TOT_ATT, use the
ALTER UPDATE statements in Figure 5-23.

When you execute these statements, the additional specifications are added to the
SET clause of the TOT_ERRS update.

DROP UPDATE TOT_ERRS;

DEFINE UPDATE TOT_ERRS
FROM R_REC
TO DRL.RWSTAT
GROUP BY
(DATE = DATE,
HOUR = HOUR(TIME))

SET
(R_ATT = SUM(TOTR_ATT)
RD_ERR = SUM(R_ERR)
W_ATT = SUM(TOTW_ATT)
WR_ERR = SUM(W_ERR)
TOT_ATT = SUM(TOTR_ATT + TOTW_ATT)
TOT_ERR = SUM(R_ERR + W_ERR));

COMMENT ON UPDATE TOT_ERR IS ’Definition to update DRL.RWSTAT’;

Figure 5-22. Modifying an update definition using the DROP statement

ALTER UPDATE TOT_ERRS SET R_ATT = SUM(TOTR_ATT);
ALTER UPDATE TOT_ERRS SET W_ATT = SUM(TOTW_ATT);
ALTER UPDATE TOT_ERRS SET TOT_ATT = SUM(TOTR_ATT + TOTW_ATT);

Figure 5-23. Using the ALTER UPDATE statement

Changing and deleting update definitions

5-28 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 6. Collecting log data

This chapter describes how to control the collection process. It also describes how
to collect data from logs that have already been processed and how to use the
HEADER clause of the DEFINE LOG statement to verify the completeness of a log
during collection.

Controlling data collection
About this task

When you collect log data, the log collector processes all updates that are defined
for records in the log being collected. For example, if you specify COLLECT
SOME_LOG, the log collector processes all stored update definitions for that log and
collects data based on those definitions.

When you collect log data, you can control much of the collection process. Using
the COLLECT statement, you can control:
v Which records in a log are processed
v Which tables are updated
v The size of the collect buffer
v How often records are written to the database and a commit is made
v What happens if an overflow condition occurs during the update of a table row

Limiting the collection to certain records
About this task

Sometimes, you have many record types within a log data set and you want to
collect data from only certain records. For example, assume that SOME_LOG has 5
different record types. Each record type has a field called RC_TPE that has a value
from 1 to 5 (corresponding to the record type).

Figure 6-1 shows how to use the COLLECT statement to collect data from record
type 3.

Note: RC_TPE must be defined using the HEADER clause of the DEFINE LOG
statement. For more information about using the HEADER clause, see “Verifying
log data sets during data collection” on page 6-4.

During data collection, only the update definitions and record description that are
stored for record type 3 of SOME_LOG are processed.

COLLECT SOME_LOG
WHERE (RC_TPE=3);

Figure 6-1. Using the WHERE clause on the COLLECT statement

6-1



Including and excluding data tables
About this task

You can control which data tables are updated during data collection processing
using the INCLUDE and EXCLUDE clauses on the COLLECT statement.

In Chapter 4, “Updating, storing, and managing data in tables,” on page 4-1, data
was collected, stored in DRL.STATS_H, summarized, and then stored in
DRL.STATS_D. However, if you want to collect log data and update
DRL.STATS_H, but you do not want to update DRL.STATS_D, use the INCLUDE
clause in Figure 6-2.

When you use the INCLUDE clause, you specify that data will be collected for that
table only. No other tables (such as summary tables) are affected by the data
collection.

You can also exclude certain tables. For example, if you want to collect data, but
you did not want to update DRL.STATS_D, use the COLLECT statement in
Figure 6-3.

In Figure 6-3, you specified that all tables associated with RWINFO.LOG should be
updated except DRL.STATS_D.

Including or excluding groups of tables
You can use the percent sign (%) to include or exclude groups of tables. For
example, assume you stored a number of update definitions for RWINFO.LOG.
These definitions update a variety of tables, all beginning with DRL.STATS. But,
you do not want to update DRL.STATS_D.

To update all DRL.STATS tables except DRL.STATS_D, use the COLLECT
statement in Figure 6-4.

COLLECT RWINFO.LOG
INCLUDE DRL.STATS_H;

Figure 6-2. Using the INCLUDE clauses on the COLLECT statement

COLLECT RWINFO.LOG
EXCLUDE DRL.STATS_D;

Figure 6-3. Using the EXCLUDE clauses on the COLLECT statement

COLLECT RWINFO.LOG
INCLUDE LIKE ’DRL.STAT%’
EXCLUDE DRL.STATS_D

Figure 6-4. Using the percent sign (%)

Controlling data collection

6-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Controlling when a COMMIT is made
About this task

You can use the COMMIT AFTER clause to determine when a COMMIT is made.
A COMMIT makes permanent the changes that occur in the DB2 data tables. You
can specify that the log collector write its internal buffer to the database and a
COMMIT be made:
v When the buffer is full
v At the end of log data set processing
v After a certain number of records

For example, Figure 6-5 shows how to use the COMMIT AFTER clause to update
the database after every 5000 records.

In Figure 6-5, you specify that the log collector should update the database after
every 5000 records.

When you use the COMMIT AFTER clause, ensure that the buffer is large enough
to hold the records. You determine the size of the buffer by specifying the BUFFER
clause.

Controlling buffer size
About this task

With the BUFFER clause, you can determine the number of bytes used by the log
collector's internal buffer. Figure 6-6 shows how to use the BUFFER clause to
specify a buffer size of 500 000 bytes.

The minimum size of the buffer is 10 KB, the default is 10 MB. The maximum size
of the buffer is limited to the available virtual storage.

Note: The log collector sometimes requires more buffer space than you specify. It
will abend if it cannot obtain the extra space.

Handling table row overflows
About this task

You can determine what the log collector collector does if an overflow condition
occurs during the update of a table row. An overflow is a situation when the result
of an accumulation function exceeds the capacity of the column that should receive
it.

You can specify that the log collector either continue processing, re-initializing the
value that had the overflow, or stop processing.

COLLECT SOME_LOG
COMMIT AFTER 5000 RECORDS;

Figure 6-5. Using the COMMIT AFTER clause of the COLLECT statement

COLLECT SOME_LOG
BUFFER SIZE 500K;

Figure 6-6. Using the BUFFER clause of the COLLECT statement

Controlling data collection

Chapter 6. Collecting log data 6-3



Collecting data more than once
About this task

Sometimes, you might need to collect data again after you have already updated
data tables. The log collector keeps track of the processed logs to prevent collecting
the same data twice. If you try to collect data on the same log more than once, the
log collector issues a message saying that the log has already been processed.
However, if you must collect data from a log again anyway, use the REPROCESS
keyword on the COLLECT statement shown in Figure 6-7:

As a result, the log collector collects data from the log again.

Note: When you use the REPROCESS keyword, data that is already stored in data
tables is not replaced. Instead, new data is added to the existing data. So, if you
attempt to use REPROCESS and you want to start over (store data in an empty
data table), you must first create a PURGE definition as discussed in “Deleting
data” on page 4-7. Then, you can reprocess a log and store the data in the data
table.

Collecting data from partially processed logs
About this task

Occasionally, a system failure or other condition may cause the collection process
to halt prematurely. If the log has not been completely processed, you can restart
the data collection by issuing the COLLECT statement again. The log collector will
begin processing data again, starting after the last completely processed record.

Verifying log data sets during data collection
You can use the DEFINE LOG statement to provide more than the name of the log
you are defining. You can also use the DEFINE LOG statement to verify that the
log is complete and to ensure that the log collector does not process the log more
than once.

Assume that you want to define a log (called SUB_LOG). Although the log
contains many different record types, these fields are common to all records in
SUB_LOG:

Table 6-1. Fields that are common to all records in SUB_LOG

Field name Offset Length Data format Description

R_LEN 0 2 Binary Length of the record

R_TYPE 2 2 Character Record type

R_TIME 4 6 Hexadecimal Time the record was written

R_DATE 10 4 Hexadecimal Date the record was written

S_ID 14 4 Character System identifier

P_ID 18 8 Character Program identifier

COLLECT SOME_LOG
REPROCESS;

Figure 6-7. Using the REPROCESS keyword

Collecting data more than once

6-4 Tivoli Decision Support for z/OS: Language Guide and Reference



The log always contains a record of type 2 (R_TYPE = 2) as the first record in the
log and a record of type 3 (R_TYPE = 3) as the last record.

Figure 6-8 shows how to use the DEFINE LOG statement to define this log.

The HEADER clause identifies the fields that are common to all records in
SUB_LOG. You have to identify only the fields you need. Here, you must identify
R_DATE, R_TIME, and R_TYPE because you use them in the TIMESTAMP, FIRST
RECORD, and LAST RECORD clauses of the DEFINE LOG statement.

Note: The header field definitions apply only to the log definition itself. If you
plan to use these fields in the data collection process, you must define them again
using the DEFINE RECORD statement.

The header fields are defined in the same way that the record fields were defined
in “Defining a record” on page 2-3.

When you collect log data, the first record and last record conditions are checked
to determine whether this is a complete and valid log data set. If not, an warning
message is issued to the data set you specified on the DRLOUT JCL statement.

If you specify the TIMESTAMP clause, the log collector stores the timestamps of
the first and last records. It also writes these timestamps to the DRLOUT file.
Using the TIMESTAMP clause, you know the time period covered by the log data
set. You can also ensure that the log collector only processes the log once (unless
you specify the REPROCESS clause).

DEFINE LOG SUB_LOG
HEADER
(R_LEN OFFSET 0 LENGTH 2 BINARY,
R_TYPE OFFSET 2 LENGTH 1 BINARY,
R_TIME OFFSET 3 LENGTH 6 TIME(HHMMSS),
R_DATE OFFSET 9 LENGTH 4 DATE(0CYYDDDF),
S_ID OFFSET 13 CHAR(4),
P_ID OFFSET 17 CHAR(8))

TIMESTAMP TIMESTAMP(R_DATE,R_TIME)
FIRST RECORD R_TYPE=2
LAST RECORD R_TYPE=3;

COMMENT ON LOG SUB_LOG IS ’Log definition for SUB_LOG’;

Figure 6-8. Using the HEADER, TIMESTAMP, FIRST RECORD, and LAST RECORD clauses
of the DEFINE LOG statement

Verifying log data sets during data collection

Chapter 6. Collecting log data 6-5



6-6 Tivoli Decision Support for z/OS: Language Guide and Reference



Part 2. Log collector language reference



Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 7. How to read the syntax diagrams

The syntax diagrams in Chapter 8, “Elements of the log collector language,” on
page 8-1 through Chapter 11, “Log collector language statements,” on page 11-1
graphically illustrate the coding options available for the log collector functions
and statements. These diagrams give you a quick visual method for determining
whether:
v An element is a required, optional, or default element.
v A word or value is repeatable.
v An element is a constant or a variable.

The lines and arrows in a diagram symbolize the way these elements are combined
to form a valid function or statement.

Note: The syntax diagrams show the sequence of tokens, not of individual
characters. For more information, see “How your text is processed” on page 8-5.

Syntax is described using these conventions:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a statement.
The ────► symbol indicates that the statement syntax is continued on the next
line.
The ►──── symbol indicates that a statement is continued from the previous line.
The ───►◄ symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the ►───
symbol and end with the ───► symbol.

v Required items appear on the horizontal line (the main path).

►► required_item required_item ►◄

v Optional items appear below the main path.

►► required_item
optional_item

►◄

v If you can choose from two or more items, they appear vertically, in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path.

►► required_item
optional_choice1
optional_choice2

►◄

7-1



If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

►► required_item
optional_choice
optional_choice
default_choice

►◄

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

►► required_item ▼

.

repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

►► required_item ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can repeat the items in a stack.
v Keywords appear in uppercase (for example, DEFINE RECORD). They must be

spelled exactly as shown. Variables appear in all lowercase letters (for example,
record-name). They represent user-supplied names or values.

►► DEFINE RECORD record-name IN LOG log-name ►◄

v A fragment contains a large element or group of elements that appear more than
once in the syntax diagram. The fragment appears at the end of the diagram,
before any syntax notes.
All fragment references inside the diagram are enclosed by vertical bars. The text
in a fragment reference matches the title of the fragment it references:

►► Parameter One Parameter Two ►◄

Parameter One

ParamNameOne = FragmentOne

Parameter Two

ParamNameTwo = FragmentOne

FragmentOne:

field-name
* OFFSET integer

►

How to read the syntax diagrams

7-2 Tivoli Decision Support for z/OS: Language Guide and Reference



►
LENGTH integer

* field-format

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

How to read the syntax diagrams

Chapter 7. How to read the syntax diagrams 7-3



How to read the syntax diagrams

7-4 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 8. Elements of the log collector language

This chapter introduces basic elements common to all statements: keywords,
identifiers, constants, and delimiters. It explains how to enter text in a data set, and
how to use blanks and comments to format and annotate the text.

The chapter also introduces the naming convention for DB2 tables and describes
how you can parameterize your definitions using variables.

Characters
The basic symbols of the log collector language are single-byte EBCDIC characters.
Within some language elements, you can also enter sequences of double-byte
characters. Each such sequence must be enclosed between (single-byte) shift-out
and shift-in characters. Unless otherwise stated, all characters named below are
single-byte EBCDIC characters.

A letter is one of the characters A through Z and a through z, or any of the three
alphabetic extenders for national languages. (The three alphabetic extenders are
X'5B', X'7B' and X'7C'. Using code pages 37 and 500, they display as $, #, and @,
respectively.)

A digit is any of the characters 0 through 9.

Tokens
The smallest building blocks of the language are tokens. The syntax diagrams
show the sequence of tokens, rather than individual characters. The tokens are of
six kinds:
v Words
v Delimited words
v String constants
v Integer constants
v Floating-point constants
v Delimiters

Words
A word is a letter followed by zero or more characters, each of which is a letter, a
digit, or the underscore character (_).

Examples
A ABC Length Z_121

Before processing, all lowercase letters in a word are translated to uppercase. This
means, for example, that length, Length, and LENgth are all interpreted as LENGTH.

The words are used as language keywords and as identifiers. The keywords must
be as specified in the syntax diagrams. The identifiers are names you give things
you work with. See “Identifiers” on page 8-6 for more information about
identifiers.

8-1



Delimited words
A delimited word is a sequence of one or more characters enclosed within
quotation marks ("). The sequence may contain any characters, but quotation
marks may only appear in pairs (""). Any unpaired quotation mark is interpreted
as the end of the token.

Examples
"A 2" "JobClass ""A"""

Before processing, the enclosing quotation marks are removed, and each pair of
quotation marks within the token is replaced by a single quotation mark. The two
examples become A 2 and JobClass "A", respectively. Notice that each contains a
blank in the middle.

The delimited word is afterwards treated the same as a word. Thus, delimited
words let you code words that contain characters other than uppercase letters,
digits, and underscore.

A delimited word may contain sequences of double-byte characters enclosed
between shift-out and shift-in characters. The quotation marks are single-byte
characters; they are recognized only outside a double-byte sequence.

The delimited words are used as identifiers. See “Identifiers” on page 8-6 for more
information about identifiers.

String constants
A string constant is a sequence of zero or more characters enclosed within
apostrophes (’). The sequence can contain any characters, but apostrophes may
only appear in pairs (’). Any unpaired apostrophe is interpreted as the end of the
token.

Examples
’A 2’ ’a:b’ ’JobClass ’A’’ ’’

A string constant represents the character string obtained by removing the
enclosing apostrophes, and replacing each pair of apostrophes within the string by
a single apostrophe. The first three constants in the example thus represent the
strings A 2, a:b, and JobClass ’A’, respectively. Notice that the first and the third
contain a blank in the middle. The last example represents the empty string: a
sequence of zero characters.

A string constant may contain sequences of double-byte characters, each enclosed
between shift-out and shift-in characters. The apostrophes are single-byte
characters and will only be recognized outside a double-byte sequence.

The maximum length of a string represented by a string constant is 254 bytes. This
includes any shift characters enclosing sequences of double-byte characters.

Integer constants
An integer constant is a sequence of one or more digits.

Examples
62 100 32767 720176 0000000015

Tokens

8-2 Tivoli Decision Support for z/OS: Language Guide and Reference



An integer constant represents a whole number in decimal notation. The number
must not exceed 2 147 483 647. The maximum length of the token is 32 characters.

Floating-point constants
A floating-point constant is a sequence of one or more digits followed by a decimal
point and zero or more digits, optionally followed by an E and a signed or
unsigned number of at most two digits.

Examples
25.5 1000. 0.0 37589.33333 15E1 2.5E5 2.2E-1 5.E+22

A floating-point constant represents a 64-bit floating-point number of System/390®

architecture. The number is represented in decimal notation, with Enn meaning
multiplied by 10 to power nn. For example, 2.5E5 means 2.5×105, and 2.2E-1 means
2.2×10-1. The specified value is rounded to the closest value that can be represented
as a 64-bit floating-point number.

The number must not exceed 1663-1649, which is approximately 7.2E75. The smallest
possible value different from 0 is 16-65, which is approximately 5.4E-79.

The maximum length of the token is 32 characters.

Delimiters
A delimiter is any of these characters or character pairs:
( ) , . ; : + - / * = < > <> >= <= ||

Input lines
You enter the log collector language text in a sequential data set. The data set may
have either fixed-length records (record format F or FB) or varying-length records
(record format V or VB). You can use only positions 1 through 72 of each record.
The log collector ignores anything beyond position 72. (In a fixed-length record,
position number 1 is the first byte of the record. In a varying-length record,
position number 1 is the fifth byte of the record, that is, one immediately after the
record descriptor word.)

An input line is the contents of one record, starting with position 1, and ending
either at position 72, or at the end of record, whatever comes first. If you use a file
with 80-byte fixed-length records, this corresponds exactly to a line displayed by
the ISPF editor. If you use a file with varying-length records, the actual input line
may be shorter than the line shown on the screen. Notice that the line then ends at
the last non-blank character, which is important if you want to code a token
extending over several input lines. When the log collector processes your text, it
acts as if all input lines were concatenated into one long string. The only case
where a line break influences processing is when it terminates a line comment.
Otherwise, line breaks are ignored.

Example
Suppose you entered these lines on the editor screen (both starting at position 1):

’ABC
DEF’

Tokens

Chapter 8. Elements of the log collector language 8-3



If you use fixed-length 80-byte records, the log collector interprets this as ’ABC
followed by 68 blanks followed by DEF’. If you use varying-length records, the log
collector interprets this as ’ABCDEF’.

Blanks
Some tokens cannot be entered immediately one after another, because together,
they form another token. For example, you cannot enter the word LENGTH
immediately followed by the integer constant 2, because the log collector would
treat them as one word LENGTH2. To separate these tokens, enter one or more
blanks between them.

Apart from separating tokens, all blanks between tokens are ignored by the log
collector.

Blanks between tokens are allowed, and ignored, even if they are not needed to
separate the tokens. For example, A + B is correct and equivalent to A+B. You
normally use these blanks to arrange the text so that it is readable.

Blanks within tokens are significant and not ignored.

Comments
To make your text readable, you can include explanations that are ignored by the
log collector. You can enter these explanations, or comments, anywhere between
the tokens. Any sequence of comments and blanks between the tokens is allowed
and ignored. Blanks and comments are also ignored before the first and after the
last token. If you wish, you can use a comment instead of blanks to separate
tokens. The comments are of two kinds:
v Line comments
v Block comments

Line comments
A line comment is any sequence of characters starting with a double minus sign
(--) up to the end of the current input line.

Examples
-- This is a line comment.
-- Another line comment. Notice that it may contain unpaired ’ and " .

The comment may contain sequences of double-byte characters enclosed between
shift-out and shift-in characters. The line break that terminates the comment must
occur within a single-byte sequence. If the line ends in a double-byte sequence, the
next line will be interpreted as starting in the single-byte mode, usually resulting
in an error.

Block comments
A block comment is any sequence of characters starting with slash asterisk (/*) up
to the nearest following asterisk slash (*/).

Example
/* This is a block comment.

Notice that it can extend over several lines.
It can contain -- and unpaired ’ or " */

Input lines

8-4 Tivoli Decision Support for z/OS: Language Guide and Reference



The comment can contain sequences of double-byte characters enclosed between
shift-out and shift-in characters. The asterisk and slash that terminate the comment
are single-byte characters and will only be recognized outside a double-byte
sequence.

How your text is processed
Before processing your text, the log collector converts it into a sequence of tokens.
Understanding how this is done may help you write the text and interpret
messages about syntax errors. The process is illustrated in this example:

Example
These two lines constitute a fragment of a log collector statement:

/* Summarize the data */
Group By (Job="Job Name"||’01’) -- By job name with 01 appended

This fragment is first split into tokens, blanks, and comments:
blanks:
block comment: /* Summarize the data */
blanks:
word: Group
blanks:
word: By
blanks:
delimiter: (
word: Job
delimiter: =
delimited word: "Job Name"
delimiter: ||
string constant: ’01’
delimiter: )
blanks:
line comment: -- By job name with 01 appended

Then, the blanks and comments are discarded, and words and delimited words are
transformed as described under “Words” on page 8-1 and “Delimited words” on
page 8-2. The result is the following sequence of tokens:

word: GROUP
word: BY
delimiter: (
word: JOB
delimiter: =
word: Job Name
delimiter: ||
string constant: ’01’
delimiter: )

This sequence of tokens constitutes the proper input to the log collector, and is
specified by syntax diagrams. The syntax diagram specifying this particular
fragment of a statement is:

►► ▼

,

GROUP BY ( column-name = expression ) ►◄

By comparing the sequence of tokens with this syntax, the log collector recognizes
GROUP and BY as keywords, and JOB as an identifier (a column name). By similarly
using the syntax for expression, it recognizes Job Name as an identifier. Notice that

Comments

Chapter 8. Elements of the log collector language 8-5



Job Name is treated as one word, with a blank in its middle. Notice also that it
would make no difference if you coded "GROUP" (with quotation marks) instead of
Group.

The log collector always processes the text in one direction. When it comes to a
point where it cannot interpret the next portion of the text as a token, blank, or
comment, it does not return to try an alternative interpretation, but signals an
invalid character, skips the character, and proceeds to identify the next token,
blank, or comment. When the log collector finds that a token does not match the
syntax, it does not return to try alternatives, but signals an unexpected token. In
each case, after signalling the error, the log collector skips the rest of current
statement, that is, all tokens up to, and including, the nearest semicolon token.

Identifiers
The words and delimited words are mainly used as names of things you work
with: logs, records, fields within records, and so on. When used in this way, they
are called identifiers.

You select the identifiers. By coding an identifier as a delimited word, you can use
any sequence of characters as the name, including blanks and double-byte
characters. In general, the only restriction on your choice of an identifier is that it
must not exceed 18 bytes. The restrictions on identifiers used for specific purposes
are:
v The name of a log cannot exceed 16 bytes.
v The name of a record cannot have the asterisk (*) as both the first and the last

character.
v The name of a table column must consist of uppercase letters, digits, and

underscore characters. It must start with a letter and must be distinct from all
SQL reserved words.

v The name of a file (a ddname) and the name of a program cannot exceed 8
bytes. It must consist of uppercase letters and digits, and must start with a letter.

All lengths include any shift characters enclosing the sequences of double-byte
characters.

In some contexts, an identifier may be confused with a keyword. For this reason,
do not use the words CASE, CURRENT, LOOKUP, NOT, and USER as names of anything
you might reference within an expression; in particular, as names of fields in a
record.

Table names
The DB2 tables have names that consist of two identifiers separated by a period
(.). Both identifiers must consist of uppercase letters, digits, and underscore
characters, and each must start with a letter. They must be distinct from all SQL
reserved words. The first identifier cannot exceed 8 bytes.

Example
ABC.DAYSTAT_1

The first identifier (ABC in this case) is called the prefix, and the table name written
in this form is called a qualified table name. You can also code a single identifier
as a table name. Such an unqualified table name is implicitly prefixed with the

How your text is processed

8-6 Tivoli Decision Support for z/OS: Language Guide and Reference



user ID of the user who runs the log collector. Thus, for example, if your user ID is
ABC, then specifying DAYSTAT_1 as a table name is equivalent to specifying
ABC.DAYSTAT_1.

If not stated otherwise, a table name anywhere in this manual means a qualified or
unqualified table name.

Statements
The input in the log collector language is a sequence of statements. The statements
must be separated by semicolons (;). The semicolons are not considered a part of
the statement and are not shown in syntax diagrams.

Using variables to modify your text
Sometimes it is convenient to leave certain details open, and fill them in at the last
moment. Suppose that you are writing definitions for some installation, and you
do not know the prefix used for table names at that installation. You can then code
everything, except for the prefix. Instead of the prefix, you can write a marker that
will be replaced by the prefix at a later time. This marker, called a variable marker,
has the form of an ampersand (&) immediately followed by a word. For example,
you can write:

DEFINE UPDATE XYZ FROM &PREFIX.JOBSTAT_D TO ...

The variable marker is in this case &PREFIX. One way of specifying the actual prefix
is by executing a log collector statement such as:

SET PREFIX=’ABC’;

As explained in “SET” on page 11-53, this statement defines a variablePREFIX with
valueABC. From that moment on, whenever the log collector encounters the marker
&PREFIX, it logically replaces the marker by the value of the variable PREFIX. Thus,
your statement will be processed as if you have coded:

DEFINE UPDATE XYZ FROM ABC.JOBSTAT_D TO ..

You may code the variable marker at any place you would code a token. To
properly terminate it, you might have to follow it with a blank or a comment. Any
lowercase letters in the variable marker are translated to uppercase before the
marker is used to identify the variable. The replacement string can consist of any
number of tokens, blanks, and/or comments.

An alternative way to define a variable is to code &PREFIX=ABC as a part of the
parameter string supplied to the log collector at the invocation. See Appendix B,
“JCL for the log collector language and report definition language,” on page B-1
for details.

If you use variable markers, fill in the details when the log collector processes your
text. If your text is, for example an update definition, this means all details are
fixed before the definition is stored. Another method, described in “Obtaining the
value of a variable” on page 9-4, lets you postpone this until the moment when the
stored definition is actually used.

Table names

Chapter 8. Elements of the log collector language 8-7



8-8 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 9. Values and expressions

This chapter discusses the data items, or values, processed by the log collector. It
introduces the notion of a data type and null value, and describes how values are
specified by means of expressions.

Expressions are important tools for defining what to do with the data, and are
used in almost all statements of the log collector language. You will in most cases
use rather simple expressions, consisting of a single identifier or a constant, or
perhaps two such items and an operator. However, you can use the constructions
described here to specify calculations of almost any complexity. The only limitation
is the size of the expression, which cannot exceed 2 000 bytes. The size of the
internal representation of the expression is also limited, which sometimes might
limit the external form to less than 2 000 bytes. There is also a limit on the nesting
depth of certain structures (such as parentheses), but you are unlikely to reach it.

An expression that specifies a truth value (that is, one of the values true and false)
is called a condition.

This chapter does not cover everything about expressions. The special case of an
expression called a function call is discussed in Chapter 10, “Functions,” on page
10-1.

Data types
The main task of the log collector is to process data. The smallest unit of data
processed by the log collector is called a value. A value can be obtained, for
example, from a field in a record, from a DB2 table, stated explicitly in your
definition, or computed from other values. The values handled by the log collector
are:
v Integers, such as 5, 0, or -127
v Floating-point numbers, such as 3.333 or 1.5×107

v Character strings, such as xy%(?z or ABC
v Dates, such as April 15, 2000
v Times, such as 16 hours 32 minutes 55.123456 seconds
v Timestamps, such as 16 hours 32 minutes 55.123456 seconds on April 15, 2000
v Truth values, such as true or false

These seven kinds are called data types. For convenience, the integers and
floating-point numbers are together called numbers, or numeric values. The dates,
times, and timestamps are together called date/time values.

Integers
An integer is a whole number in the range -2147483648 to +2147483647.

Floating-point numbers
A floating-point number is a number that can be represented as a normalized
64-bit floating-point number of System/390 architecture. The numbers that can be
represented in this way have absolute values up to 1663-1649, which is
approximately 7.2×1075. The smallest absolute value different from 0 that can be
represented is 16-65 (approximately 5.4×10-79).

9-1



Character strings
A character string, or string, is a sequence of 0 to 254 bytes. It can contain
sequences of double-byte characters. Each sequence of double-byte characters must
begin with a shift-out character, and end with a shift-in character. The length of the
string is the number of bytes in the sequence. The string of length 0 is called the
empty string.

Dates
A date is a three-part value (day, month, year) designating a day according to the
Gregorian calendar. The range of the year part is 1 to 9 999. The range of the
month part is 1 to 12. The range of the day part is 1 to x, where x depends on the
month.

All computations on dates are performed as if the Gregorian calendar was in effect
since year 0001.

Times
A time is a four-part value (hour, minute, second, and microsecond) designating a
time of day under a 24-hour clock. The range of the hour part is 0 to 24, the range
of the minute and second part is 0 to 59, and the range of the microsecond part is
0 to 999 999. If the hour is 24, the remaining parts must be 0.

Timestamps
A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that designates a point in time: a day and a time of that day. The
year, month, and day designate the day as specified under “Dates.” The hour,
minute, second, and microsecond designate the time as specified under “Times.”

Truth values
A truth value is one of the values true or false.

Missing and invalid data
In some situations, the value specified by your definition cannot be obtained. For
example, you specify a value from a field in a record, but the record is too short to
contain the field. Alternatively, the record section that should contain the field is
absent, or the field is present, but contains non-valid data.

It also happens that the value has been obtained from a field, but you specified an
operation on it that cannot be performed. For example, you specified that you
want the result of dividing the value from a field A by the value from a field B. If
this second value happens to be 0, the requested result cannot be obtained; you
cannot divide by 0.

Null value
For the purpose of specifying what to do with data, it is convenient to treat an
absence of data as just another value, distinct from all other values handled by the
log collector. This special value is called the null value.

The null value is useful because whenever you specify that a value should be
obtained in some way, you can be sure that you always obtain a value (sometimes
null, and sometimes not). You need not treat separately the cases of data being
present and data being absent.

Data types

9-2 Tivoli Decision Support for z/OS: Language Guide and Reference



The rules of the log collector language specify exactly when the result of each
action is null. For example, the value obtained from an absent or an invalid field is
null, the result of division by 0 is null, and so on. The rules also specify what
happens when an operation has null as one of the arguments. For example, the
result of addition or multiplication is null whenever one of the operands is null.
Other operations, such as SUM or MAX, just ignore null operands. These rules
correspond to how you normally understand absence of data. (For example, if you
do not have the value A or B, you do not have A+B either.) If the rules do not suit
your purpose, you can always replace a null value by a default. You can use the
VALUE function for this purpose. (See “VALUE” on page 10-19).

Remember that the null value is not the same as the empty string. The former is
an absence of data; the latter is a well-defined data item, namely a string of 0
bytes.

Unknown truth value
If you specify a test such as A>10, and you do not have A (that is, A is null), you
cannot decide whether the result of the test is true or false. You simply do not
have any result. This absence of a truth value has slightly different consequences
than absence of other kinds of value. It is therefore not represented by a null value,
but by a new value called unknown. You may regard it as a third truth value
besides true and false.

If you do not use the logical operator NOT, you may treat unknown as equivalent
to false. This is so because whenever a truth value is used, the outcome depends
only on whether the value is true or not true.

If you use the operator NOT, however, you cannot treat these values as equivalent.
This is so because NOT(false)=true, while NOT(unknown)=unknown.

Error handling
Some null values result from situations that are normal, such as absent field or
absent section. Other null values result from errors, such as invalid data or a
violation of language rules.

If the log collector obtains null value as the result of an error, you will be notified
in some way that there was an error. The notification depends on the statement
that detected the error. For example, the COLLECT statement issues a message that
values were set to null because of error; the LIST RECORD statement represents
the null values resulting from an error in a special way.

Some errors are detected at an early stage, before they can result in a null value.
For example, if you by mistake write 15/0 in your definition, you will receive an
error message, and your definition will not be accepted. Notice, however, that not
all errors of this kind are detected early. For example, if you code
TIMESTAMP(’00.00.00.000000’), the log collector will not detect the error (time
string instead of timestamp string) until it uses your definition and tries to
evaluate the TIMESTAMP function.

Some simple ways of specifying a value
About this task

This section discusses two ways in which you can specify a value:
v Write the value explicitly

Missing and invalid data

Chapter 9. Values and expressions 9-3



v Write the name of the value, or of something that holds the value

These two ways are the simplest forms of an expression. Notice that a truth value
cannot be specified in any of these two ways. It can only be computed from other
values.

Specifying a value explicitly
About this task

You can specify a value explicitly by writing an integer constant, a floating-point
constant, or a string constant. For example:

720176 2.2E-1 ’JobClass ’A’

(For more information about constants, see “Tokens” on page 8-1).

Using the integer constant or floating-point constant alone, you can only represent
non-negative numbers. To represent a negative number, you can use the minus
operator (-) in front of the constant. See “Arithmetic operations” on page 9-8.

You cannot explicitly write a date/time value or a truth value, because there are no
date/time constants or truth constants. To write a specific date/time value, you
can use a function and a date/time string, as explained in “Date/time strings” on
page 9-6. To write a specific truth value, you can use a comparison involving two
constants, such as 0=0. See “Comparisons” on page 9-10.

Specifying a value using an identifier
About this task

The most common way to specify a value is to write an identifier. The identifier is
usually the name of something that holds a value, for example, a field in a record,
or a column in a DB2 table. It may also be the name of the value itself, for
example, a value defined by means of a LET clause of DEFINE UPDATE
statement. For more information about identifiers, see “Tokens” on page 8-1 and
“Identifiers” on page 8-6.

Whenever a syntax diagram for a statement specifies an expression, the description
of the statement shows which identifiers are allowed in that expression. For
example, in the DEFINE RECORD statement, the expression defining the offset of a
section can contain only names of fields in certain previously defined sections. If
you specify another name (for instance, the name that is not used in the definition,
or the name of a section in the record, or the name of a field that cannot be
referenced), you receive an error message stating that the name is unknown, or
that you cannot use it in this context.

Some expressions cannot contain any identifiers, for example, the expression
following the keyword PARM in the statements DEFINE LOG and DEFINE
RECORDPROC. If you use an identifier there, you receive an error message stating
that the name is unknown.

Obtaining the value of a variable
About this task

As explained in “SET” on page 11-53, you can define a named string, called a
variable, by executing a log collector statement such as

SET SYSTEM_ID = ’LDGMVS1’;

Some simple ways of specifying a value

9-4 Tivoli Decision Support for z/OS: Language Guide and Reference



This statement defines the variable SYSTEM_ID having value LDGMVS1. The variable
remains defined, with its value unchanged, until the end of the current log
collector run, or until you change its value by executing another SET statement. An
alternative way of defining a variable is to code &SYSTEM_ID=LDGMVS1 as a part of
the parameter string supplied to the log collector at the invocation. See
Appendix B, “JCL for the log collector language and report definition language,”
on page B-1 for details.

You can obtain the value of a variable by coding a variable reference. A variable
reference consists of a colon (:) followed by the variable name, for example,
:SYSTEM_ID.

Using a variable reference has the effect of modifying your stored definition just
before it is used. Suppose you have stored an update definition containing the
fragment:

SYSID = :SYSTEM_ID

If you execute a COLLECT statement using this update definition, this fragment
will have the same effect as if you have coded SYSID = ’LDGMVS1’ (assuming the
variable was defined as in the example above).

A variable reference is a special case of expression that can be used only where an
expression is allowed. You can also use variable markers to modify your
statements, “Using variables to modify your text” on page 8-7. This method lets
you replace any part of your text, not only an expression. However, variable
markers modify the text when your definition is stored; by using a variable
reference, you postpone the modification until the definition is used.

Obtaining the current date and time
About this task

The log collector maintains a timestamp identifying the time when it started the
execution of the current statement. You can obtain this timestamp, or the date or
time part of it, by writing one of these pairs of keywords:

CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP

These values are of type date, time, and timestamp, respectively. Because these
values correspond to the start of the current statement, you obtain the same value
each time you use these keywords within the same statement.

Obtaining the user ID
About this task

The log collector also has access to the user ID of the user running it. You can
obtain this user ID by writing:

USER

The value specified by this keyword is a character string of length 8.

Some simple ways of specifying a value

Chapter 9. Values and expressions 9-5



Date/time strings
About this task

To write specific date/time values, you must code expressions explicitly, for
example:

DATE(’2000-06-27’)
TIME(’10.32.55.123456’)
TIMESTAMP(’2000-06-27-10.32.55.123456’)

These expressions are specific cases of function calls, discussed in Chapter 10,
“Functions,” on page 10-1. The character strings 2000-06-27, 10.32.55.123456, and
2000-06-27-10.32.55.123456 are examples of date/time strings. Date/time strings
are character strings of a specific format.

Date string
A character string that represents a date in the form yyyy-mm-dd where
yyyy is the year, mm is the month, and dd is the day.

Time string
A character string that represents a time in the form hh.mm.ss.uuuuuu,
where hh is the hour, mm is the minute, ss is the second, and uuuuuu is the
microsecond.

Timestamp string
A character string that represents a timestamp in the form
yyyy-mm-dd-hh.mm.ss.uuuuuu where yyyy, mm, dd, hh, mm, ss, and uuuuuu are
as above.

You will most likely use date/time strings to write specific date/time values. These
strings are more than a substitute for date/time constants; all that was stated
earlier also applies to date/time strings obtained as a result of your processing, not
only those specified as constants.

DATE function
The DATE function converts a date string to a date. The expression such as
DATE(’2000-06-27’) specifies the result of such conversion, here, the date June 27,
2000. In a similar way, the TIME function converts a time string to a time, and
TIMESTAMP converts a timestamp string to a timestamp. The expression
TIME(’10.32.55.123456’) specifies thus the time 10 hours 32 minutes 55.123456
seconds, and the expression TIMESTAMP(’2000-06-27-10.32.55.123456’) specifies
the timestamp 10 hours 32 minutes 55.123456 seconds on June 27, 2000.

Automatic conversions
In some special cases, you can code a date/time string instead of a date/time
value, and the log collector automatically performs the conversion for you. For
example, if CREATION_DATE specifies a date, you may code CREATION_DATE<’2000-06-
25’. As described in “Comparisons” on page 9-10, the log collector will then
automatically convert the date string to a date, and compare the result with the
date specified by CREATION_DATE. The information on such an automatic conversion
is found in the description of the operation that implies it.

Date/time strings

9-6 Tivoli Decision Support for z/OS: Language Guide and Reference



Labeled durations
A labeled duration specifies a number of time units. It is used for incrementing or
decrementing date/time values (see “Incrementing and decrementing date/time
values” on page 9-9.) It is also used to specify the rounding factor for the ROUND
function (see “ROUND” on page 10-14.) Note that a labeled duration by itself does
not specify any value.

The syntax of labeled duration follows.

►► count YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

►◄

count:

constant
identifier
function
(expression)

constant
Is a constant that explicitly specifies a value. See “Specifying a value
explicitly” on page 9-4.

identifier
Is the name of a value or of something that holds a value. It specifies that
value. See “Specifying a value using an identifier” on page 9-4.

function
Is a function call. It specifies the result of a function. See Chapter 10,
“Functions,” on page 10-1.

(expression)
Specifies the value of expression. See “Expressions” on page 9-17.

The count must specify a number. If this number is a floating-point number, it is
converted to an integer by discarding the fractional part.

Examples
2 YEARS
X DAYS
(N/60) MINUTES

Labeled durations

Chapter 9. Values and expressions 9-7



Using operators
About this task

You can specify a value either by writing it explicitly, or by writing its name.
Alternatively, you can specify a value as a result of modifying or combining other
values. This section discusses how to specify new values by:
v Arithmetic operations on numbers
v Incrementing and decrementing of date/time values
v Concatenation of strings
v Comparisons
v Pattern matching
v Logical operations on truth values

All these operations are specified by an operator written between the operands (an
infix operator), or in front of an operand (a prefix operator). A much greater
variety of operations, using another format, is described in Chapter 10,
“Functions,” on page 10-1.

Arithmetic operations
You can apply the prefix operator plus (+) or minus (-) to any numeric value.

Examples
-DOWN_TIME +40 -23.456 -1E8

The result is of the same type as the operand. The prefix plus does not change its
operand. The prefix minus reverses the sign of its operand.

You can apply any of the infix operators plus (+), minus (-), multiply (*), and
divide (/), to any pair of numeric values.

Examples
A+B N_DATASETS-5 COUNT*1E-6 RESP_TIME/60

The result depends on the operand types:
v If both operands are integers, the result is an integer. The operation is performed

using integer arithmetic. The division is performed so that the remainder has the
same sign as the dividend.

v If both operands are floating-point numbers, the result is a floating-point
number. The operation is performed using long floating-point operations of
System/390.

v If one of the operands is an integer and the other a floating-point number, the
integer is converted to a floating-point number. The operation is then performed
on the result of the conversion, using floating-point arithmetic. The result is a
floating-point number.

The result of dividing an integer by another integer is also an integer. Thus, for
example, if RESP_TIME is an integer less than 60, the result of RESP_TIME/60 is 0. If
you want the exact result, write RESP_TIME/60.0 instead. The right-hand operand is
then the floating-point number 60.0; the left-hand operand, RESP_TIME, is converted
to a floating-point number, and the result is a floating-point number.

For all operators (both prefix and infix), the result is null if any of the operands is
null. If the result is an integer, the result must be within the range of integers. If

Using operators

9-8 Tivoli Decision Support for z/OS: Language Guide and Reference



the result is a floating-point number, the result must be within the range of
floating-point numbers. The right-hand operand of a divide operator must not be
0.

Incrementing and decrementing date/time values
About this task

You can modify a date/time value by adding or subtracting a specified number of
time units. The operation is expressed by means of an infix operator plus (+) or
minus (-). The left-hand operand is the date/time value. The right-hand operand
must be a labeled duration. (See “Labeled durations” on page 9-7.)

Examples
CURRENT DATE + 2 MONTHS
INTV_END - X SECONDS
JOB_START + (N/60) MINUTES

These expressions specify, respectively: the date two months from now, the time X
seconds before the time INTV_END, and the timestamp N/60 minutes after the
timestamp JOB_START.

The number of time units specified by the labeled duration can be negative or 0.
Adding a negative number of units is the same as subtracting that number of
units. Subtracting a negative number of units is the same as adding that number of
units.

The result of the operation is null if the date/time value is null, or if the count in
the labeled duration is null.

Incrementing and decrementing dates:
About this task

If the left-hand operand is a date, the right-hand operand must be a labeled
duration of years, months, or days. The result is a date.

Adding or subtracting a number of years affects the year part of the date. The
month is unchanged, and so is the day unless the result would be February 29 of a
non-leap-year. In that case, the day is changed to 28.

Adding or subtracting a number of months affects the month and, if necessary, the
year. For the purpose of this operation, a month is the equivalent of a calendar
page. Adding or subtracting months is like turning the pages of a calendar. The
day part is unchanged unless the result would be invalid (September 31, for
example). In that case, the day is changed to the last day of the month.

Adding or subtracting a number of days affects the day and, if necessary, also the
month and year.

The result must be within the range of dates.

Incrementing and decrementing times:
About this task

If the left-hand operand is a time, the right-hand operand must be a labeled
duration of hours, minutes, seconds, or microseconds. The result is a time with an
hour part in the range from 0 to 23.

Using operators

Chapter 9. Values and expressions 9-9



Any overflow or underflow from the hour part is discarded.

Incrementing and decrementing timestamps:
About this task

If the left-hand operand is a timestamp, the right-hand operand can be a labeled
duration of any units. The result is a timestamp with an hour part in the range
from 0 to 23.

Adding or subtracting a number of years, months, or days affects the date part as
described in “Incrementing and decrementing dates” on page 9-9. Adding or
subtracting a number of hours, minutes, seconds, or microseconds may cause an
overflow or underflow from the hour part. This overflow or underflow is carried
on to the day part and affects the date part in the same way as adding or
subtracting a number of days.

The result must be within the range of timestamps.

Concatenation of strings
You can concatenate strings using two vertical bars (||) as an infix operator.

Example
JOB_NAME || ’01’

The result is a character string. The length of the result cannot exceed 254. If any of
the strings being concatenated is null, the result is null.

Comparisons
You can compare two values using one of the infix operators equal (=), not equal
(<>), greater than (>), less than (<), greater than or equal (>=), less than or equal
(<=). The result is a truth value. If one of the compared values is null, the result is
unknown.

Examples
A>10 JOB_NAME<’ABC’ DATE<>’1993.04-15’

Numbers must be compared with numbers. Character strings must be compared
with character strings and date/time values. Date/time values must be compared
with character strings or date/time values of the same type. No other comparisons
are allowed.

Numbers are compared by their algebraic value.
v If both numbers are floating-point, they are compared using long floating-point

operation of System/390. Two floating-point numbers are considered equal only
if their normalized forms have identical bit configurations.

v If one of the numbers is an integer and the other a floating-point number, the
integer is converted to a floating-point number. The comparison is then
performed with the result of the conversion.

Character strings are compared byte by byte, left to right. If the strings are not the
same length, the comparison is made with a temporary copy of the shorter string
that has been padded on the right with blanks so that it has the same length as the
other string.

Using operators

9-10 Tivoli Decision Support for z/OS: Language Guide and Reference



Two strings are equal if they are both empty or if all corresponding bytes are
equal. Otherwise, their relation is determined by the comparison of the first
unequal pair of bytes.

When a character string is compared with a date/time value, it must be a valid
date/time string of the corresponding kind. The string is converted to a date/time
value and the comparison is performed on the result.

All comparisons of date/time values are chronological; the value representing the
later point of time is considered to be greater.

Because the hour part may range from 0 to 24, certain pairs of different timestamps
represent the same time. When such timestamps are compared, the one with a
greater date part is considered greater. For example, the result of this comparison
is true:
TIMESTAMP(’1985-02-23-00.00.00.000000’)>TIMESTAMP(’1985-02-22-24.00.00.000000’)

(However, that the INTERVAL function computes the interval between these
timestamps as 0.)

Pattern matching
You can use the infix operator LIKE to test whether a string matches a given
pattern. This operator can only be used within a lookup expression. (Pattern
matching can also be specified in the INCLUDE or EXCLUDE clause of certain
statements.)

Examples
JOB_NAME LIKE ’%A_CD’
SYSTEM_ID LIKE ’BU%’

Both operands must be character strings. The left-hand operand is the string being
tested. The right-hand operand is the pattern.

The result is a truth value. The result of the operation is true if the string matches
the pattern. The result is false if the string does not match the pattern. The result is
unknown if the string or the pattern is null.

The string matches the pattern if it can be divided into substrings of zero or more
characters, matching the consecutive characters of the pattern in such a way that:
v Each percent sign in the pattern is matched by a sequence of zero or more

arbitrary characters in the string.
v Each underscore character in the pattern is matched by an arbitrary character in

the string.
v Any other character in the pattern is matched by an identical character in the

string.

If the pattern is an empty string, the only string matching it is the empty string.
Also, an empty string matches a pattern consisting of one or more percent signs.

Examples
The string ABCAXCD matches the pattern %A_CD. The required partition is:

ABC A X C D
| | | | |
% A _ C D

Using operators

Chapter 9. Values and expressions 9-11



Another string matching this pattern is ABCD:
A B C D

| | | | |
% A _ C D

The strings AB, XYZCD, and AXYCD do not match the pattern.

Double-byte characters are not recognized in pattern matching.

Logical operations
You can apply the prefix operator NOT to any truth value. The result is defined as
follows for operand p:

Table 9-1. Logical operation NOT

p NOT p

True False

False True

Unknown Unknown

You can apply the infix operators AND, OR to any pair of truth values. The result
is defined as follows for operands p and q:

Table 9-2. Logical operations AND and OR

p q p AND q p OR q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

Testing for null
About this task

Because the result of any comparison involving a null value is unknown, you
cannot use a comparison operator to test whether a given value is null. To test
whether a value is null, you can code the keywords IS NULL or IS NOT NULL after
it.

Examples
JOB_NAME IS NULL
START_TIME IS NOT NULL

The result is true or false depending on whether the tested value is null. The value
being tested must not be a truth value.

Using operators

9-12 Tivoli Decision Support for z/OS: Language Guide and Reference



Case expressions
A case expression specifies a value selected by testing one or more conditions. It
has this format:

►► CASE ▼

.

WHEN condition THEN expression
ELSE expression

END ►◄

WHEN condition THEN expression
Defines one of the possible cases. The case is applicable if the value of
condition is true. The result of the case-expression is equal to the result of
expression in the applicable case. If several cases are applicable, the result
is defined by the first of them. If none of the cases is applicable, the result
of case-expression is defined by the ELSE clause.

The expressions in all case definitions must specify values of the same
type.

ELSE expression
Defines the result of the case-expression if none of the cases is applicable.
The result of the case-expression is then equal to the result of expression. If
the ELSE clause is absent, the result is null.

The expression in the ELSE clause must specify a value of the same type as
expressions in the case definitions.

An alternative form of case-expression is:

►► CASE expression ▼

.

WHEN expression THEN expression ►

►
ELSE expression

END ►◄

CASE expression
The expression is evaluated and the result is compared with results of
expressions appearing in the WHEN clauses.

WHEN expression THEN expression
Defines one of the possible cases. The case is applicable if the result of the
expression following WHEN is equal to the result of the expression
appearing in the CASE clause (and neither of them is null). The result of
the case-expression is equal to the result of the expression appearing after
THEN in the applicable case. If several cases are applicable, the result is
defined by the first of them. If none of the cases is applicable, the result of
case-expression is defined by the ELSE clause.

All expressions following WHEN must specify values of the same type as
the expression in the CASE clause. All expressions following THEN must
specify values of the same type (but not necessarily the same as the
expressions following WHEN).

ELSE expression
Defines the result of the case-expression if none of the cases is applicable.

Case expressions

Chapter 9. Values and expressions 9-13



The result of the case-expression is then equal to the result of expression. If
the ELSE clause is absent, the result is null.

The expression in the ELSE clause must specify a value of the same type as
expressions following THEN.

Examples
CASE

WHEN X=’A12’ THEN 1
WHEN Y>’BCD’ THEN 2
ELSE 0

END

If X has the value A12, the result is 1; otherwise, if Y has a value greater than BCD,
the result is 2; otherwise the result is 0.

CASE X
WHEN ’A12’ THEN 1
WHEN ’B23’ THEN 2

END

If X has the value A12, the result is 1; if X has the value B23, the result is 2;
otherwise the result is null.

Lookup expressions
A lookup expression specifies a value obtained from a table. It has this form:

►► LOOKUP lookup-column IN table-name
ORDER BY order-column

WHERE ►◄

lookup-condition:

▼

,

expression compare-operator column-name
expression LIKE column-name

compare-operator:

=
<>
<
>
<=
>=

IN table-name
Identifies the lookup table, that is, the table from which to obtain the
value.

LOOKUP lookup-column
Identifies the column of the lookup table from which to obtain the value.

ORDER BY lookup-column
Identifies a column in the lookup table that can be used to specify which
entry is selected when several entries match the lookup condition.

Case expressions

9-14 Tivoli Decision Support for z/OS: Language Guide and Reference



WHERE lookup-condition
Identifies the row of the lookup table from which to obtain the value.

expression compare-operator column-name
Is a comparison, as described in “Comparisons” on page 9-10. The names
in expression are names belonging to the context where the lookup
expression is used. The column-name is the name of a column of the lookup
table.

expression LIKE column-name
Specifies pattern matching as described in “Pattern matching” on page
9-11. The names in expression are names belonging to the context where the
lookup expression is used. The column-name is the name of a column of the
lookup table.

AND Is the logical operator defined in “Logical operations” on page 9-12.

How the result is obtained
The result of the lookup expression is defined by this process:
v Replace each expression in the lookup condition by its value.
v Evaluate the resulting condition for each row of the lookup table, replacing each

column-name by a value from that row.
v If the condition is true for exactly one row, obtain the result from that row.
v If the condition is true for several rows, select one of them:

– If an ORDER BY parameter is specified, select the row containing the lowest
value in the order column. If several rows contain the same value in the order
column then select the row from among these rows according to the
remaining rules below.

– If the condition does not contain LIKE operators, select any row with a true
condition (not defined which).

– If the condition contains one or more LIKE operators, select among the rows
with a true condition, the row with the most specific pattern.

Obtain the result from the selected row.
v If the condition is not true for any row, the result of the lookup expression is

null.

(The described process is just a way of defining the result. The actual method used
by the log collector does not necessarily require that all rows are tested.)

Which is the most specific pattern
To see which of two patterns is more specific, you can use this method. Represent
each pattern by a string of letters A, U, X, and Z, as follows:
v Represent each percent sign by X.
v Represent each underscore by U.
v Represent each of the remaining characters by A.
v Add Z at the end.

The resulting string is called the pattern scheme. The more specific pattern is one
whose pattern scheme comes first in alphabetical order.

If the lookup condition contains more than one LIKE operator, compare the
patterns obtained by concatenating the right-hand operands of all LIKE operators
in the order they appear in the condition.

Lookup expressions

Chapter 9. Values and expressions 9-15



Example A
Suppose the table ACCOUNTING_PERIODS contains this data:

An example of a lookup expression using this table is:
LOOKUP PERIOD IN ACCOUNTING_PERIODS

WHERE SMF72DTE >= START_DATE
AND SMF72DTE <= END_DATE

Assume that SMF72DTE is a field containing the date 2000-01-30. To evaluate the
lookup expression, replace SMF72DTE in the lookup condition by its value. The
result is:

DATE(’2000-01-30’) >= START_DATE AND DATE(’2000-01-30’) <= END_DATE

Now, evaluate this condition for each row of ACCOUNTING_PERIODS, using the
values of START_DATE and END_DATE from that row.

The condition is true only for the second row. Obtain the result of the lookup
expression from the PERIOD column in that row. The result is 90/02.

If SMF72DTE contains the date 1999-12-31, the condition is not true for any row,
and the result of the lookup expression is null.

Example B
Suppose the table TRANSACTION_CODES contains this data:

An example of a lookup expression using this table is:
LOOKUP TRAN_CODE IN TRANSACTION_CODES

WHERE SMF67SYS LIKE SYSTEM_ID
AND SMF67TRAN LIKE TRANS_ID

If SMF67SYS is a field containing the string CICSPROD and SMF67TRAN is a field
containing the string BUS1, the condition evaluated for each row of the table is:

’CICSPROD’ LIKE SYSTEM_ID AND ’BUS1’ LIKE TRANS_ID

START_DATE END_DATE PERIOD
------------------------------
2000-01-01 2000-01-28 00/01
2000-01-29 2000-02-25 00/02
2000-02-26 2000-03-25 00/03

: : :
: : :

TRANS SYSTEM TRAN
ID ID CODE
---------------------
FA21 CICSPROD T1
B% CICSPROD T2
BU% CICSPROD T3
F% CICSPROD T4
X% CICSTEST T5
Y% CICSTEST T6
BUS% % T7
BUS_ % T8

Lookup expressions

9-16 Tivoli Decision Support for z/OS: Language Guide and Reference



This condition is true for rows 2, 3, 7, and 8. These rows, with their concatenated
patterns and pattern schemes (sorted by pattern scheme), are:

The row with the most specific pattern is one where column TRAN_CODE
contains the string T3. The result of the lookup expression is T3.

Important
To achieve acceptable performance, lookup tables are read into storage buffers at
the start of processing. This means that the tables should not be too large. It also
means that any changes to a lookup table resulting from a collect operation do
not affect the result of a lookup before the collect is completed.

Expressions
This diagram specifies the general form of expression that you can use wherever
the syntax specifies an expression. The diagram does not reflect all the rules that
you must follow when you use operators. You can find these rules in section
“Using operators” on page 9-8.

►► ▼

▼

,

constant
+ identifier .
- :identifier

case-expr + labeled-duration
lookup-expr -
function
(expression)
CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP
USER

►◄

operator:

+
-
*
/
||

constant
A constant that explicitly specifies a value. See “Specifying a value
explicitly” on page 9-4.

TRANS SYSTEM TRAN concatenated pattern
ID ID CODE pattern scheme
----- -------- ---- ------------ ------------
BU% CICSPROD T3 CICSPRODBU% AAAAAAAAAAXZ most specific
B% CICSPROD T2 CICSPRODB% AAAAAAAAAXZ
BUS_ % T8 %BUS_ XAAAUZ
BUS% % T7 %BUS% XAAAXZ most general

Lookup expressions

Chapter 9. Values and expressions 9-17



identifier
The name of a value or of something that holds a value. It specifies that
value. See “Specifying a value using an identifier” on page 9-4.

:identifier
Specifies the value of a variable. See “Obtaining the value of a variable” on
page 9-4.

case-expr
A case expression. See “Case expressions” on page 9-13.

lookup-expr
A lookup expression. See “Lookup expressions” on page 9-14.

function
A function call. It specifies the result of a function. See Chapter 10,
“Functions,” on page 10-1.

(expression)
Specifies the value of expression.

labeled-duration
A labeled duration. See “Labeled durations” on page 9-7.

CURRENT DATE ;CURRENT TIME ;CURRENT TIMESTAMP
Specify current date, time, or timestamp. See “Obtaining the current date
and time” on page 9-5.

USER Specifies current user ID. See “Obtaining the current date and time” on
page 9-5.

+ - * / ||
Are operators. Their meaning is specified in “Using operators” on page
9-8.

Precedence of operators
If not specified otherwise by means of parentheses, the prefix plus and minus are
applied before multiply and divide. Multiply and divide are applied before infix
plus and minus. Operators of the same priority are applied from left to right.

Conditions
The following diagram specifies the general form of expression that you can use
wherever the syntax specifies a condition. Notice that the diagram does not reflect
all the rules that you must follow when you use operators. You can find these
rules in “Using operators” on page 9-8.

►► ▼

,

expression compare-operator expression
NOT expression IS NULL

IS NOT NULL
(condition)

►◄

logical-operator:

AND
OR

Expressions

9-18 Tivoli Decision Support for z/OS: Language Guide and Reference



compare-operator:

=
<>
<
>
<=
>=

expression compare-operator expression
Is a comparison, as described in “Comparisons” on page 9-10.

expression IS NULL ;expression IS NOT NULL
Is a test for null. See “Testing for null” on page 9-12.

(condition)
Specifies the value of condition.

AND, OR, NOT
Are logical operators defined in “Logical operations” on page 9-12.

Precedence of operators
If not specified otherwise by means of parentheses, NOT is applied before AND
and OR. The operators AND and OR are then applied from left to right.

Conditions

Chapter 9. Values and expressions 9-19



9-20 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 10. Functions

This chapter describes a special form of expression called a function call. You can
use a function call directly in the statements whenever the syntax specifies an
expression. You can also use it as a part of more complex expressions.

A function call specifies a value as the result of applying a named operator, called
a function, to one or more arguments. It consists of a function name followed by a
pair of parentheses enclosing the specification of arguments. Most arguments are
values specified by means of expressions. However, some functions use arguments
that are not values, for example, a section name or a labeled duration.

The result of a function is null if one of the arguments is null. The only exception
to this rule is the VALUE function (see “VALUE” on page 10-19).

This chapter describes, in alphabetical order, all functions available in the log
collector language. It describes the purpose, syntax, and result of each function. It
also provides examples of how to use the function.

CHAR
The CHAR function obtains a string representation of a date/time value.

Syntax

►► CHAR (expression) ►◄

The argument must be a date, a time, or a timestamp.

Result
The result is a character string. It is the date/time string that represents the
argument.

Example
Assume that:
v X_DATE has the value May 3, 2000.
v X_TIME has the value 5 hours, 17 minutes, and 34 seconds.
v X_TSTAMP has the value 5 hours, 17 minutes, and 34 seconds on May 3, 2000.

The function produces these results:
CHAR(X_DATE) = ’2000-05-03’
CHAR(X_TIME) = ’05.17.34.000000’
CHAR(X_TSTAMP) = ’2000-05-03-05.17.34.000000’

DATE
The DATE function obtains a date from a value.

10-1



Syntax

►► DATE (expression) ►◄

The argument must be a date, a timestamp, a number, or a date string.

Result
The result is a date.
v If the argument is a date, the result is that date.
v If the argument is a timestamp, the result is the date part of that timestamp.
v If the argument is a number, consider the integer part of that number as n. It

must be in the range 1 to 3 652 059. The result of the function is the date of the
day with sequential number n, counting from January 1, 0001 as day 1.

v If the argument is a date string, the result is the date represented by that string.

Example
Assume that:
v X_DATE has the value April 22, 1993.
v X_TSTAMP has the value 15 hours, 2 minutes, and 1 second on March 6, 1993.
v X_STRING has the value '2000-03-06'.

The function produces these results:
DATE(X_DATE) = April 22, 1993
DATE(X_TSTAMP) = March 6, 1993
DATE(727159) = November 23, 1991
DATE(’2000-06-15’) = June 15, 2000
DATE(X_STRING) = March 6, 2000

DAY
The DAY function obtains the day part of a value.

Syntax

►► DAY (expression) ►◄

The argument must be a date or a timestamp.

Result
The result is an integer between 1 and 31. It is the day part of the date or
timestamp.

Example
Assume that:
v X_DATE has the value June 9, 2000.
v X_TSTAMP has the value 15 hours, 2 minutes, and 1 second on February 19,

2000.

The function produces these results:
DAY(X_DATE) = 9
DAY(X_TSTAMP) = 19

DATE

10-2 Tivoli Decision Support for z/OS: Language Guide and Reference



DAYS
The DAYS function obtains the day number corresponding to a date.

Syntax

►► DAYS (expression) ►◄

The argument must be a date, a timestamp, a date string, or a timestamp string.

Result
The result is an integer. It is the sequential number of the day represented by the
argument, considering January 1, 0001 as day 1.
v If the argument is a date or a date string, the result is the sequential number of

the day represented by the date.
v If the argument is a timestamp or a timestamp string, the result is the sequential

number of the day represented by the date part of the timestamp.

Example
Assume that:
v X_DATE has the value April 15, 1993.
v X_TSTAMP has the value 11 hours, 33 minutes, and 21 seconds on August 26,

1993.

The function produces these results:
DAYS(X_DATE) = 727668
DAYS(X_TSTAMP) = 727801
DAYS(’1993-05-03’) = 727686
DAYS(’1993-05-03-15.45.01.000000’) = 727686

Usage notes
You can use the DAYS function to obtain the day of week for a given date. To
compute the day of week for X_DATE, use this expression:
DAYS(X_DATE)-((DAYS(X_DATE)-1)/7)*7

The result is a number from 1 through 7, representing Monday through Sunday. If
X_DATE has the value April 15, 1993, the result is 4 which represents a Thursday.

You can use the DAYS function, with the DATE function, to obtain the date of
Monday in the week containing a given date. To compute the Monday date of the
week containing X_DATE, use this expression:
DATE((DAYS(X_DATE)/7)*7 + 1)

(This expression assumes that weeks start on Monday). If X_DATE has the value
April 15, 1993, then the result is April 12, 1993, which is a Monday of the week
that includes April 15, 1993.)

DAYTYPE
The DAYTYPE function obtains the day type of a given day.

DAYS

Chapter 10. Functions 10-3



Syntax

►► DAYTYPE (expression) ►◄

The argument must be a date.

The result of the function is defined by means of two tables,
DRLSYS.DAY_OF_WEEK and DRLSYS.SPECIAL_DAY. These tables are control
tables and should be set up by your system administrator. (For more information
about control tables, refer to the Administration Guide).

The table DRLSYS.DAY_OF_WEEK defines an 8-character string, called a day type
code, for each day of the week. The table on your system might contain the
information shown in Figure 10-1. The numbers 1 through 7 identify the days of
week, Monday through Sunday. The table defines MON as the day type for
Monday, TUE as the day type for Tuesday, and so on.

The table DRLSYS.SPECIAL_DAY defines day type codes for certain dates. The
table on your system might contain the information shown in Figure 10-2. It
defines HOLIDAY as the day type for December 25, 1993 and January 1, 1994.

Notice that day type codes can be different for different installations. The codes for
days of week need not be unique. For example, a particular installation might use
WEEKDAY as the day type for Monday through Friday, and WEEKEND for
Saturday and Sunday.

Result
The result is an 8-character string. It is the day type code for the day represented
by the argument.

DAY OF DAY
WEEK TYPE

------ --------
1 MON
2 TUE
3 WED
4 THU
5 FRI
6 SAT
7 SUN

Figure 10-1. Example of DRLSYS.DAY_OF_WEEK table

DAY
DATE TYPE
---------- --------
1993-12-25 HOLIDAY
1994-01-01 HOLIDAY

Figure 10-2. Example of DRLSYS.SPECIAL_DAY table

DAYTYPE

10-4 Tivoli Decision Support for z/OS: Language Guide and Reference



Let date be the argument of DAYTYPE. Let w be a number representing the day of
week for date, the values 1 through 7 standing for Monday through Sunday. The
result of DAYTYPE is specified by the following expression.

VALUE( LOOKUP DAY_TYPE IN DRLSYS.SPECIAL_DAY
WHERE date = DATE,

LOOKUP DAY_TYPE IN DRLSYS.DAY_OF_WEEK
WHERE w = DAY_OF_WEEK )

A null result of this expression is considered an error. It means that day of week
number w is missing from DRLSYS.DAY_OF_WEEK.

Example
Assume that:
v DRLSYS.DAY_OF_WEEK contains the data shown in Figure 10-1 on page 10-4.
v DRLSYS.SPECIAL_DAY contains the data shown in Figure 10-2 on page 10-4.
v X_DATE has the value December 25, 1993.
v X_TSTAMP has the value 10 hours, 5 minutes, and 21 seconds on December 22,

1993.

The function produces these results:
DAYTYPE(X_DATE) = ’HOLIDAY ’
DAYTYPE(X_TSTAMP) = ’WED ’

DIGITS
The DIGITS function obtains a character string representation of a number.

Syntax

►► DIGITS (expression) ►◄

The argument must be an integer.

Result
The result is the string of digits (other than leading zeros) that represents the
absolute value of the argument.

Example
DIGITS(754) = ’754’
DIGITS(00054) = ’54’
DIGITS(-54) = ’54’

FIELD
The FIELD function obtains the contents of a record field in a section specified by
its occurrence number.

Syntax

DAYTYPE

Chapter 10. Functions 10-5



►► ▼

▼

.

FIELD (field-name , expression )
.

, *

►◄

The field-name must name a field in a repeated section. Each expression must specify
an integer. These integers are occurrence numbers of nested repeated sections that
contain the field named field-name.

Result
The result is the value contained in field-name.

Example
Assume that you have the record shown in Figure 10-3.

To obtain the data in the field SUB_A in the first occurrence of SUBSEC, write:
FIELD(SUB_A,1)

To obtain the data in the field SPGM_A in the second occurrence of the SUBPGM
section from the first occurrence of the SUBSEC section, write:
FIELD(SPGM_A,1,2)

For more information about using the FIELD function, see “Accessing specific
sections in a record” on page 5-14.

FLOAT
The FLOAT function obtains a floating-point representation of a number.

Syntax

►► FLOAT (expression) ►◄

The argument must be a number.

REC_
TYPE

SUB_A SUB_B SUB_C

REC_
LEN

REC_
TSTAMP

SSEC_
OFF

SPGM_
OFF

SSEC_
LEN

SPGM_
LEN

SSEC_
OCC

SPGM_
OCC

SUB_A

SPGM_A SPGM_B SPGM_C

SUB_B SUB_C

First SUBSEC section

Second SUBSEC section

First SUBPGM

First SUBPGM

SPGM_
OFF

SPGM_
LEN

SP

SPGM_
OCC

&

&

SPGM_A SPGM_B SPGM_C SPGM_A

Figure 10-3. Example of a record containing nested sections.

FIELD

10-6 Tivoli Decision Support for z/OS: Language Guide and Reference



Result
If the argument is an integer, the result is a floating-point representation of that
integer. If the argument is a floating-point number, the result is that number.

Example
FLOAT(14) = 14.0
FLOAT(25.7) = 25.7

GETVAR

The GETVAR function is an internal function designed for the IMS CSQ Feature
and obtains the IMS system ID associated with a log data set.

Syntax

►► GETVAR (expression) ►◄

The only valid argument to the GETVAR function is ’IMSID’.

Result

An 8 character IMS system ID or ’$UNKNOWN’ is returned.

Example

Assume you have the following IMS system log data sets:
v DRLLOG1 with data for IMSA
v DRLLOG2 with data for IMSB
v DRLLOG3 with data for IMSC

When records from DRLLOG2 are being processed, the result is GETVAR(’IMSID’) =
’IMSB ’ .

Usage Notes: If the IMS X'07' records are input from the DRLIMS07 DD name, the
GETVAR(’IMSID’) returns the value ’$UNKNOWN’.

HOUR
The HOUR function obtains the hour part of a value.

Syntax

►► HOUR (expression) ►◄

The argument must be a time or a timestamp.

Result
The result is an integer between 0 and 24. It is the hour part of the argument.

FLOAT

Chapter 10. Functions 10-7



Example
Assume that:
v X_TIME has the value 14 hours, 20 minutes, 55 seconds.
v X_TSTAMP has the value 10 hours, 5 minutes, and 21 seconds on January 3,

1993.

The function produces these results:
HOUR(X_TIME) = 14
HOUR(X_TSTAMP) = 10

INTEGER
The INTEGER function obtains the integer part of a number.

Syntax

►► INTEGER (expression) ►◄

The argument must be a number.

Result
If the argument is an integer, the result is that integer. If the argument is a
floating-point number, the result is the integer part of that number.

Example
INTEGER(45) = 45
INTEGER(-75.3) = -75
INTEGER(0.0005) = 0

INTERVAL
The INTERVAL function obtains the length of a time interval in seconds.

Syntax

►► INTERVAL (expression, expression) ►◄

Both arguments must be date/time values of the same type.

Result
The result is a floating-point number.

The result is the interval, in seconds, from the instant designated by the first
argument to the instant designated by the second argument.

If the first argument is later than the second, the result is negative.

The result has the maximum precision allowed by its floating-point representation.
Therefore, results up to 2283 years have a precision of 1 microsecond.

HOUR

10-8 Tivoli Decision Support for z/OS: Language Guide and Reference



Example
Assume you have these variables:
v TME1 has the value of 6 hours, 20 minutes, 29 seconds, and 25000 microseconds.
v TME2 has the value of 18 hours, 25 minutes, 20 seconds.
v DAY1 has the value of March 5, 1993.
v DAY2 has the value of March 8, 1993.
v TS1 has the value of 5 hours on March 5, 1993.
v TS2 has the value of 10 hours, 30 minutes on March 11, 1993.

The function produces these results:
INTERVAL(TME1, TME2) = 43490.975
INTERVAL(TME2, TME1) = -43490.975
INTERVAL(DAY1, DAY2) = 259200.0
INTERVAL(TS1, TS2) = 538200.0

IPCONV
The IPCONV function converts a string that contains the hexadecimal
representation of an IP address to the corresponding presentation format.

Syntax

►► IPCONV (expression) ►◄

The argument must be the hexadecimal string that represents the IP address. The
hexadecimal string can only contain characters, in the range 0-9 and A-F. The
string must be 32 characters long.

For IPV4 addresses, only the following format is supported:
00000000000000000000FFFFxxxxxxxx

Where xxxxxxxx are hexadecimal digits.

Result
The result is a character string that is the presentation format of the IP address. It
can have the following formats:

IPV4 address
d.d.d.d

Where d are decimal digits, from 0 to 255, with the leading zero omitted.

IPV6 address
x:x:x:x:x:x:x:x

Where x are groups of four hexadecimal digits, from 0000 to FFFF, with the
leading zero omitted, but at least one digit in each group.

Note: Other types of presentation formats, such as an IPV6 address with all zeros
omitted (for example, ::) or an IPV4 address mapped as an IPV6 address (for
example, ::FFFd.d.d.d) are not supported.

Example
Assume that:
v IPV4 is a string with the following address:

INTERVAL

Chapter 10. Functions 10-9



IPV4 = ’00000000000000000000FFFC50B6B01’

v IPV6 is a string with the following address:
IPV6 = ’FE800000000000000011019900810106’

The function produces these results:
IPCONV(IPV4) = ’197.11.107.1’
IPCONV(IPV6) = ’FE80:0:0:0:11:199:81:106’

LENGTH
The LENGTH function obtains the length of a character string.

Syntax

►► LENGTH (expression) ►◄

The argument must be a character string.

Result
The result is an integer. It is the length of the argument.

Example
Assume X_STRING has the value of 'LOG_NAME'. The function produces these
results:
LENGTH(X_STRING) = 8
LENGTH(’REC_LOG’) = 7
LENGTH(’ ’) = 1
LENGTH(’’) = 0

MICROSECOND
The MICROSECOND function obtains the microseconds part of a value.

Syntax

►► MICROSECOND (expression) ►◄

The argument must be a time or a timestamp.

Result
The result is an integer between 0 and 999 999. It is the microseconds part of the
argument.

Example
Assume that:
v X_TIME has the value 14 hours, 20 minutes, 55 seconds and 155 microseconds.
v X_TSTAMP has the value 8 hours, 30 minutes, and 45 seconds on March 25,

1993.

The function produces these results:

IPCONV

10-10 Tivoli Decision Support for z/OS: Language Guide and Reference



MICROSECOND(X_TIME) = 155
MICROSECOND(X_TSTAMP) = 0

MINUTE
The MINUTE function obtains the minute part of a value.

Syntax

►► MINUTE (expression) ►◄

The argument must be a time or a timestamp.

Result
The result is an integer between 0 and 59. It is the minute part of the argument.

Example
Assume that:
v X_TIME has the value 17 hours, 16 minutes, 22 seconds and 100,000

microseconds.
v X_TSTAMP has the value 8 hours, 58 minutes, and 19 seconds on April 1, 1993.

The function produces these results:
MINUTE(X_TIME) = 16
MINUTE(X_TSTAMP) = 58

MONTH
The MONTH function obtains the month part of a value.

Syntax

►► MONTH (expression) ►◄

The argument must be a date or a timestamp.

Result
The result is an integer between 1 and 12. It is the month part of the argument.

Example
Assume that:
v X_DATE has the value July 22, 2000.
v X_TSTAMP has the value May 3, 2000.

The function produces these results:
MONTH(X_DATE) = 7
MONTH(X_TSTAMP) = 5

MICROSECOND

Chapter 10. Functions 10-11



PERIOD
The PERIOD function obtains the name of the period containing a given time
instant.

Syntax

►► PERIOD (expression1, expression2, expression3) ►◄

expression1 must be a character string.

expression2 must be a date.

expression3 must be a time.

The result of the function is defined by means of table DRLSYS.PERIOD_PLAN.
This table is a control table and should be set up by your system administrator. (For
more information about control tables, refer to the Administration Guide .)

The table DRLSYS.PERIOD_PLAN defines one or more period plans. A period plan
divides the day into named intervals (such as shifts). These intervals are called
periods. The table on your system might contain the information shown in
Figure 10-4.

Each row in the table describes one period of the period plan. A period plan is
defined separately for each day type that may be the result of the DAYTYPE
function. That day type is identified in the DAY_TYPE column.

There may be several period plans for the same day, each identified by its period
plan ID, and each defined by a group of rows in the table. The column
PERIOD_PLAN_ID contains a pattern to be matched by period plan ID. The

PERIOD DAY START END PERIOD
PLAN ID TYPE TIME TIME NAME
-------- -------- -------- -------- --------
MVS2 MON 00.00.00 24.00.00 SPECIAL
% MON 00.00.00 08.00.00 NIGHT
% MON 08.00.00 17.00.00 PRIME
% MON 17.00.00 24.00.00 NIGHT
% TUE 00.00.00 08.00.00 NIGHT
% TUE 08.00.00 17.00.00 PRIME
% TUE 17.00.00 24.00.00 NIGHT
% WED 00.00.00 08.00.00 NIGHT
% WED 08.00.00 17.00.00 PRIME
% WED 17.00.00 24.00.00 NIGHT
% THU 00.00.00 08.00.00 NIGHT
% THU 08.00.00 17.00.00 PRIME
% THU 17.00.00 24.00.00 NIGHT
% FRI 00.00.00 08.00.00 NIGHT
% FRI 08.00.00 17.00.00 PRIME
% FRI 17.00.00 24.00.00 NIGHT
% SAT 00.00.00 24.00.00 WEEKEND
% SUN 00.00.00 24.00.00 WEEKEND
% HOLIDAY 00.00.00 24.00.00 HOLIDAY

Figure 10-4. Example of DRLSYS.PERIOD_PLAN table

PERIOD

10-12 Tivoli Decision Support for z/OS: Language Guide and Reference



periods specified for each day type and period plan must not overlap and must
cover the whole day from 00 hours to 24 hours.

As specified by the table in Figure 10-4 on page 10-12, the plan named MVS2
defines all of Monday to be one period, named SPECIAL. According to any other
plan, Monday is divided into three periods named NIGHT, PRIME, and NIGHT,
respectively.

Result
The result is an 8-character string.

Let the three arguments of PERIOD be called plan, date, and time, respectively. The
result of PERIOD is the name of the period of the plan plan that contains the time
instant identified by date and time. It is specified by this lookup expression:

LOOKUP PERIOD_NAME IN DRLSYS.PERIOD_PLAN
WHERE plan LIKE PERIOD_PLAN_ID
AND DAYTYPE(date) = DAY_TYPE
AND time >= START_TIME
AND time < END_TIME

A null result of this lookup expression is regarded as an error.

The PERIOD function is defined using the DAYTYPE function. It is therefore
indirectly defined also by the tables DRLSYS.DAY_OF_WEEK and
DRLSYS.SPECIAL_DAY that define DAYTYPE.

Example

Assume that DRLSYS.PERIOD_PLAN is as shown in Figure 10-4 on page 10-12,
and that DAYTYPE is defined by the tables shown in Figure 10-5 and Figure 10-6.
Notice that June 7, 1993 is a Monday.

The function produces these results:

DAY OF DAY
WEEK TYPE

------ --------
1 MON
2 TUE
3 WED
4 THU
5 FRI
6 SAT
7 SUN

Figure 10-5. DRLSYS.DAY_OF_WEEK table

DAY
DATE TYPE
---------- --------
1993-12-25 HOLIDAY
1994-01-01 HOLIDAY

Figure 10-6. DRLSYS.SPECIAL_DAY table

PERIOD

Chapter 10. Functions 10-13



PERIOD(’MVS1’,DATE(’1993-06-07’),TIME(’06.24.19.240000’)) = ’NIGHT ’
PERIOD(’MVS2’,DATE(’1993-06-07’),TIME(’06.24.19.876050’)) = ’SPECIAL ’
PERIOD(’MVS1’,DATE(’1993-06-07’),TIME(’13.00.00.000000’)) = ’PRIME ’
PERIOD(’MVS1’,DATE(’1993-12-25’),TIME(’12.34.56.000000’)) = ’HOLIDAY ’

ROUND
The ROUND function rounds a date/time value down to a multiple of the
specified number of time units.

Syntax

►► ROUND (expression, labeled-duration) ►◄

The first argument must be a date, a time, or a timestamp. The second argument
must be a labeled duration.
v If the first argument is a date, the second argument must be a labeled duration

of years, months, or days.
v If the first argument is a time, the second argument must be a labeled duration

of hours, minutes, seconds, or microseconds.
v If the first argument is a timestamp, the second argument can be any labeled

duration.

In each case, the labeled duration must specify a number of units greater than 0.

Result
The result is of the same type as the first argument. It is obtained from the first
argument by this procedure:
v Select the part that corresponds to the time unit used in the labeled duration.

This means, if the labeled duration is n YEARS, select the year part; if the
labeled duration is n MONTHS, select the month part; and so on.

v Round the selected part to a whole multiple of the second argument, in this
sense:
– If the part is an hour, minute, second, or microsecond (and thus has values

starting with 0), round it down to the nearest number k × n, where k ≥ 0 is a
whole number, and n is the number of units in the labeled duration.

– If the part is a month or a day (and thus has values starting with 1), round it
down to the nearest number 1 + k × n, where k ≥ 0 is a whole number, and n
is the number of units in the labeled duration.

– If the part is a year, round it down to the closest number k × n, where k ≥ 0 is
a whole number, and n is the number of years in the labeled duration. If the
result is 0, replace it by 1.

v Replace all lower-order parts by their lowest values (that is, 1 for month and
day, or 0 for other parts).

v Leave the remaining parts unchanged.

Example
ROUND(DATE(’1993-06-27’),1 MONTH) = June 1, 1993
ROUND(DATE(’1993-06-27’),3 MONTHS) = April 1, 1993
ROUND(DATE(’1993-06-27’),6 MONTHS) = January 1, 1993
ROUND(DATE(’1993-06-27’),15 DAYS) = June 16, 1993
ROUND(DATE(’1993-06-27’),50 DAYS) = June 1, 1993

PERIOD

10-14 Tivoli Decision Support for z/OS: Language Guide and Reference



ROUND(TIME(’12.47.39.125000’),1 HOUR) = 12 hours
ROUND(TIME(’12.47.39.125000’),60 MINUTES) = 12 hours
ROUND(TIME(’12.47.39.125000’),30 MINUTES) = 12 hours, 30 minutes
ROUND(TIME(’12.47.39.125000’),20 MINUTES) = 12 hours, 40 minutes
ROUND(TIME(’12.47.39.125000’),5 SECONDS) = 12 hours, 47 minutes, 35 seconds

Usage notes
Notice that:
v Rounding a date to 3 months produces the first day of a quarter.
v Rounding a date to 6 months produces the first day of a half-year period.
v Rounding a date to 15 days produces the first day of a 15-day period within a

month.
v Rounding to a large number of units is allowed, but it does not affect the

higher-order parts. For example, rounding a date to 50 days produces the same
effect as rounding to 1 month.

SECOND
The SECOND function obtains the seconds part of a value.

Syntax

►► SECOND (expression) ►◄

The argument must be a time or a timestamp.

Result
The result is an integer between 0 and 59. It is the seconds part of the argument.

Example
Assume that:
v X_TIME has the value 0 hours, 4 minutes, 25 seconds, and 1 432 microseconds.
v X_TSTAMP has the value 17 hours, 25 minutes, 50 seconds, and 5 microseconds

on June 20, 1993.

The function produces these results:
SECOND(X_TIME) = 25
SECOND(X_STAMP) = 50

SECTNUM
The SECTNUM function obtains the sequential number of a section occurrence.

Syntax

►► SECTNUM (section-name) ►◄

This function is intended for use with an internal record generated from a repeated
section (see “Using repeated sections within records” on page 5-2). The section-name
must identify one of the sections included in that record.

ROUND

Chapter 10. Functions 10-15



Result
The result is an integer. It is the sequential number (within the containing section)
of the occurrence of section-name that was used to build the record.

If section-name is not a repeated section, the result is 1 if the section is present in
the record, or 0 if it is absent.

For more information about using this function, see “Obtaining a section
occurrence number” on page 5-13.

Example
Assume that you have a record shown in Figure 10-7:

Assume that SECTNUM is evaluated while processing an internal record generated
for the second occurrence of SUBPGM in the first occurrence of SUBSEC.

The function produces these results:
SECTNUM(SUBSEC) = 1
SECTNUM(SUBPGM) = 2

SUBSTR
The SUBSTR function obtains a substring of a character string.

Syntax

►► SUBSTR (expression, expression )
, expression

►◄

In this description, the three arguments are called, respectively, string, start, and
length. The string must be a character string. The start must be an integer in the
range 1 to 254. The length must be an integer in the range 0 to 255-start.

Result
The result is a character string.

REC_
TYPE

SUB_A SUB_B SUB_C

REC_
LEN

REC_
TSTAMP

SSEC_
OFF

SPGM_
OFF

SSEC_
LEN

SPGM_
LEN

SSEC_
OCC

SPGM_
OCC

SUB_A

SPGM_A SPGM_B SPGM_C

SUB_B SUB_C

First SUBSEC section

Second SUBSEC section

First SUBPGM

First SUBPGM

SPGM_
OFF

SPGM_
LEN

SP

SPGM_
OCC

&

&

SPGM_A SPGM_B SPGM_C SPGM_A

Figure 10-7. Example of a record with nested sections

SECTNUM

10-16 Tivoli Decision Support for z/OS: Language Guide and Reference



If length is specified, the result consists of length bytes of string, starting at the
position start. The string is regarded as extended on the right with the necessary
number of blanks so that the specified substring exists.

If length is not specified, the result consists of all bytes of string, starting at the
position start and extending up to the end of string. If start is greater than the
length of string, the result is an empty string.

Both start and length are expressed in bytes. The SUBSTR function does not
recognize double-byte characters, and the result need not be a well-formed
character string.

Example
The function produces these results:
SUBSTR(’SUB_REC’,3,2) = ’B_’
SUBSTR(’SUB_REC’,3) = ’B_REC’
SUBSTR(’SUB_REC’,3,10) = ’B_REC ’

TIME
The TIME function obtains a time from a value.

Syntax

►► TIME (expression) ►◄

The argument must be a time, a timestamp, or a time string.

Result
The result is a time.
v If the argument is a time, the result is that time.
v If the argument is a timestamp, the result is the time part of that timestamp.
v If the argument is a time string, the result is the time represented by that string.

Example
Assume that:
v X_TIME has the value 3 hours, 24 minutes, 20 seconds, and 2 microseconds.
v X_TSTAMP has the value 15 hours, 33 minutes, 25 seconds, and 75 microseconds

on June 20, 1993.

The function produces these results:
TIME(X_TIME) = 3 hours, 24 minutes, 20 seconds, and 2 microseconds
TIME(’17.24.13.000025’) = 17 hours, 24 minutes, 13 seconds, and 25 microseconds
TIME(X_TSTAMP) = 15 hours, 33 minutes, 25 seconds, and 75 microseconds

TIMESTAMP
The TIMESTAMP function obtains a timestamp from a value or a pair of values.

Syntax

SUBSTR

Chapter 10. Functions 10-17



►► TIMESTAMP (expression1 )
, expression2

►◄

Result
The result of the function depends on whether expression 1 or expression2 is
specified, or both.

If only one argument is specified
expression 1 must be a timestamp or a timestamp string. The result is a timestamp:
v If expression 1 is a timestamp, the result is that timestamp.
v If expression 1 is a timestamp string, the result is the timestamp represented by

that string.

If both arguments are specified
expression 1 must be a date or a date string. expression2 must be a time or a time
string.

The result is a timestamp. It consists of the date and time specified by the
arguments.

Example
Assume that:
v X_TIME has the value 3 hours, 24 minutes, 20 seconds, and 2 microseconds.
v X_DATE has the value February 11, 1993.
v X_TSTAMP has the value 15 hours, 33 minutes, 25 seconds, and 75 microseconds

on June 20, 1993.

The function produces these results:
TIMESTAMP(X_TSTAMP) = 15 hours, 33 minutes, 25 seconds, and 75 microseconds on June 20, 1993
TIMESTAMP(’1993-04-17-19.01.25.000000’) = 19 hours, 1 minute, 25 seconds on April 17, 1993
TIMESTAMP(X_DATE, X_TIME) = 3 hours, 24 minutes, 20 seconds, and 2 microseconds on February 11, 1993

TRANSLATE
The TRANSLATE function translates a character string to another representation.

Syntax

►► TRANSLATE (string )
codes

►◄

codes:

, , from-codes
, pad-byte

to-codes
, , pad-byte

from-codes
, pad-byte

TIMESTAMP

10-18 Tivoli Decision Support for z/OS: Language Guide and Reference



In this description, the arguments are called, respectively, string, to-codes, from-codes,
and pad-byte. All arguments must be character strings. The pad-byte must be a
string of length 1.

Result
The result is a character string. It is a copy of string in which some of the bytes
have been replaced by others (string itself is not altered).
v If from-codes is present, each byte of string is looked up in from-codes. If it is

found on position n of from-codes, it is replaced by the byte appearing on
position n of to-codes; otherwise it is left unchanged.
If to-codes is shorter than n or omitted, it is conceptually extended on the right
with as many copies of the pad-byte as needed. If pad-byte is omitted, a blank is
used instead.

v If from-codes is absent and to-codes is present, each byte of string is replaced by
the byte appearing on position n = b + 1 of to-codes, where b is the binary value
of the byte.
If to-codes is shorter than n, it is conceptually extended on the right with as
many copies of the pad-byte as needed. If pad-byte is omitted, a blank is used
instead.

v If both from-codes and to-codes are omitted, string is translated to uppercase: all
occurrences of lowercase letters (a-z) are replaced by their uppercase
counterparts (A-Z).

The TRANSLATE function does not recognize double-byte characters, and the
result need not be a well-formed character string.

Example
TRANSLATE(’abcdef’) = ’ABCDEF’
TRANSLATE(’abcdef’, ’*#$’, ’bde’) = ’a*c#$f’
TRANSLATE(’abcdef’, ’CD’, ’acde’, ’.’) = ’CbD..f’

VALUE
The VALUE function returns the first argument that is not null.

Syntax

►► VALUE (expression , expression ) ►◄

All arguments must have the same data type.

Result
The result has the same data type as the arguments. It is equal to the first
argument that is not null. If all arguments are null, the result is null.

Example
Assume that:
v EXPA has the value of 25.
v EXPB has the value of 50.
v EXPC has a null value.

The function produces these results:

TRANSLATE

Chapter 10. Functions 10-19



VALUE(EXPA, EXPB, EXPC) = 25
VALUE(EXPC, EXPB, EXPA) = 50
VALUE(EXPB, EXPA) = 50

WORD
The WORD function extracts a word from a character string.

Syntax

►► WORD (expression, expression )
, expression

►◄

In this description, the three arguments are called, respectively, string, n, and
delimiters. The first and third arguments must be character strings. The second
argument must be an integer.

Result
The result is a character string. If n is positive, the result is the nth word of string.
If n is negative, the result is the nth word of string, counting from the end. If n is 0,
or if the string contains fewer than n words, the result is an empty string.

The function treats string as a sequence of words separated by delimiters. A
delimiter is any byte present in delimiters, or a blank if the delimiters argument is
absent or empty. A word is any substring not containing delimiters, preceded by a
delimiter (or start of string), and followed by a delimiter (or end of string).

If a blank is specified as a delimiter, a whole sequence of adjacent blanks is
counted as one delimiter.

The WORD function recognizes double-byte characters. Since a delimiter is a
one-byte character, it is recognized only within a single-byte sequence.

Example
WORD(’A B’,2,’ ’) = ’B’
WORD(’A,,,B’,2,’,’) = ’
WORD(’A,,,B’,-1,’,’) = ’B’

YEAR
The YEAR function obtains the year part of a value.

Syntax

►► YEAR (expression) ►◄

The argument must be a date or a timestamp.

Result
The result is an integer between 1 and 9 999. It is the year part of the argument.

VALUE

10-20 Tivoli Decision Support for z/OS: Language Guide and Reference



Example
Assume that:
v X_DATE has the value February 11, 1993.
v X_TSTAMP has the value 15 hours, 33 minutes, 25 seconds, and 75 microseconds

on June 20, 1993.

The function produces these results:
YEAR(X_DATE) = 1993
YEAR(X_TSTAMP) = 1993

YEAR

Chapter 10. Functions 10-21



YEAR

10-22 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 11. Log collector language statements

The log collector language consists of statements that you use to determine how
data is collected, processed, and stored. It also provides statements that you can
use to maintain data tables and to perform the collection process.

This chapter provides an alphabetical listing of the language statements. For each
statement, the chapter describes:
v The purpose of the statement
v The syntax used for the statement
v Parameters (clauses and keywords) that are part of the statement
v Examples of how to use the statement
v Usage notes, if needed, that explain issues to consider when using the statement.

ALTER LOG
Use the ALTER LOG statement to modify a stored log definition. You can add,
change, or delete a:
v Header
v Timestamp expression
v First record or last record condition
v Log procedure name and the parameters passed to the log procedure

This description assumes that you are familiar with log definitions and the
DEFINE LOG statement. So, it explains only how ALTER LOG modifies the log
definition. It does not explain what the modification means. The syntax diagram
shows all the clauses that you can specify, but they are explained only as much as
it is needed to tell what is altered. See “DEFINE LOG” on page 11-15 for more
information.

Syntax

►► ALTER LOG log-name ▼

,

HEADER ( field )
NONE

TIMESTAMP expression
NONE

FIRST RECORD condition
NONE

LAST RECORD condition
NONE

LOGPROC procedure-name procedure-parms
NONE

►◄

procedure-parms:

ASM PARM expression
LANGUAGE ASML NONE

C

11-1



field:

field-name
* OFFSET integer-constant

►

►
LENGTH integer-constant

* field-format

Parameters
log-name

Identifies the log definition that you want to alter.

HEADER (field, ...)
Adds or replaces the header definition. The header fields are specified in
the same way as in the DEFINE LOG statement. If a header is already
defined for the log, the entire header definition is replaced.

HEADER NONE
Deletes all header fields.

TIMESTAMP expression
Adds or replaces the timestamp expression.

TIMESTAMP NONE
Deletes the timestamp expression.

FIRST RECORD condition
Adds or replaces the first record condition.

FIRST RECORD NONE
Deletes the first record condition.

LAST RECORD condition
Adds or replaces the last record condition.

LAST RECORD NONE
Deletes the last record condition.

LOGPROC procedure-name procedure-parms
Adds or modifies the LOGPROC clause.

If no log procedure is defined for the log, a log procedure definition is
added. You use then procedure-name and procedure-parms in the same way as
in the DEFINE LOG statement. If a log procedure is already defined for the
log, you use procedure-name and procedure-parms to alter the existing log
procedure definition:

procedure-name
Replaces the log procedure name. If you do not want to alter the
name, you must code here the same name as already defined.

LANGUAGE
Alters the language specification. An omitted LANGUAGE means
no change (not LANGUAGE ASM).

PARM expression
Adds or replaces the parameter expression.

PARM NONE
Deletes the parameter expression.

ALTER LOG

11-2 Tivoli Decision Support for z/OS: Language Guide and Reference



LOGPROC NONE
Deletes the log procedure definition.

Examples
Assume you want to add F_FIELD=1 as the first record condition for a log called
SOME_LOG. Use this ALTER LOG statement to add the condition:

Usage
When you use the ALTER LOG statement, you specify only a part of the log
definition. You cannot see the complete definition. This makes the change difficult
if the definition is complex. It may be more convenient to delete the entire
definition using a DROP statement and then store a modified definition using a
DEFINE LOG statement.

ALTER RECORD
Use the ALTER RECORD statement to modify a stored record definition. You can
add, change, or delete:
v Fields
v Sections
v Condition that identifies the record
v Name of the record procedure that builds the records

This description assumes that you are familiar with record definitions and the
DEFINE RECORD statement. Therefore, it explains only how ALTER RECORD
modifies the record definition. It does not explain what the modification means.
The syntax diagram shows all the clauses that you can specify, but they are
explained only as much as it is needed to tell what is altered. See “DEFINE
RECORD” on page 11-19 for more information.

Syntax

►► ALTER RECORD record-name ►

►

▼

IN LOG log-name
BUILT BY procedure-name

NONE
IDENTIFIED BY condition

NONE
,

ADD FIELDS ( field )
IN SECTION section-name

DELETE FIELD field-name
ADD SECTION section
DELETE SECTION section-name
SECTION section-name section-attributes

►◄

ALTER LOG SOME_LOG FIRST RECORD F_FIELD=1;

Figure 11-1. ALTER LOG statement

ALTER LOG

Chapter 11. Log collector language statements 11-3



section:

section-name
IN SECTION section-name PRESENT IF condition

►

►
OFFSET expression LENGTH expression NUMBER expression

*

►

►
REPEATED

▼

,

FIELDS ( field )

section-attributes:

IN SECTION section-name
NONE

PRESENT IF condition
NONE

►

►
OFFSET expression

NONE
LENGTH expression

NONE

►

►
NUMBER expression

*
NONE

REPEATED
NONREPEATED

field:

field-name
* OFFSET integer-constant

►

►
LENGTH integer-constant

*
field-format

Parameters
record-name

Identifies the record definition that you want to alter.

IN LOG log-name
Replaces the IN LOG clause.

BUILT BY procedure-name
Adds or replaces the BUILT BY clause.

BUILT BY NONE
Deletes the BUILT BY clause.

IDENTIFIED BY condition
Adds or replaces the IDENTIFIED BY condition.

IDENTIFIED BY NONE
Deletes the IDENTIFIED BY condition.

ALTER RECORD

11-4 Tivoli Decision Support for z/OS: Language Guide and Reference



ADD FIELDS (field, ... )
Adds or replaces one or more fields. The fields are specified in the same
way as in the DEFINE RECORD statement.

IN SECTION section-name
Specifies the section where to add the fields. An omitted IN
SECTION means that you want to add fields in the record.

DELETE FIELD field-name
Deletes the field field-name.

ADD SECTION section
Adds a section. The section is specified in the same way as in the DEFINE
RECORD statement.

DELETE SECTION section-name
Deletes the specified section.

SECTION section-name
Modifies the attributes of section section-name.

IN SECTION section-name
Adds or replaces the IN SECTION attribute.

IN SECTION NONE
Deletes the IN SECTION attribute.

PRESENT IF condition
Adds or replaces the PRESENT IF condition.

PRESENT IF NONE
Deletes the PRESENT IF condition.

OFFSET expression
Adds or replaces the OFFSET attribute.

OFFSET NONE
Deletes the OFFSET attribute.

LENGTH expression
Adds or replaces the LENGTH attribute.

LENGTH NONE
Deletes the LENGTH attribute.

NUMBER expression ;NUMBER *
Adds or replaces the NUMBER attribute.

NUMBER NONE
Deletes the NUMBER attribute.

REPEATED
Specifies the section to be repeated.

NONREPEATED
Specifies the section to be non-repeated.

Examples
Assume that you want to add a 10-byte character field at offset 52 in a section
called SUB_SECT. Use the following ALTER RECORD statement to add the field.

ALTER RECORD

Chapter 11. Log collector language statements 11-5



For more examples of how to use the ALTER RECORD statement, see “Using the
ALTER RECORD statement” on page 3-8.

Usage
When you use the ALTER RECORD statement, you specify only a part of the
record definition. You cannot see the complete definition. This makes the change
difficult if the definition is complex. It may be more convenient to delete the entire
definition using a DROP statement and then store a modified definition using a
DEFINE RECORD statement.

ALTER RECORDPROC
Use the ALTER RECORDPROC statement to modify a stored record procedure
definition. You can change the:
v Record types for which the record procedure applies
v Language in which the record procedure is written
v Parameters that are passed to the record procedure

This description assumes that you are familiar with record procedures and the
DEFINE RECORDPROC statement. So, it explains only how ALTER
RECORDPROC modifies the definition of a record procedure. It does not explain
what the modification means. See “DEFINE RECORDPROC” on page 11-28 for
more information.

Syntax

►► ALTER RECORDPROC procedure-name ▼

,

FOR record-name
LANGUAGE ASM

ASML
C

PARM expression
NONE

►◄

Parameters
procedure-name

Identifies the record procedure definition that you want to alter.

FOR record-name , ...
Replaces the list of records processed by the procedure.

LANGUAGE
Replaces the language specification of the procedure.

PARM expression
Adds or replaces the parameter expression.

PARM NONE
Deletes the parameter expression.

ALTER RECORD SOME_REC
ADD FIELDS (NEW_FIELD OFFSET 52 CHAR(10)) IN SECTION SUB_SECT;

Figure 11-2. ALTER RECORD statement

ALTER RECORD

11-6 Tivoli Decision Support for z/OS: Language Guide and Reference



Examples
Assume that you want to change the record procedure definition DRL2CIC1 so the
log collectorlog collector will invoke the exit with the C language interface. Use
this ALTER RECORDPROC statement to change the language interface:

Usage
When you use the ALTER RECORDPROC statement, you specify only a part of the
record procedure definition. You cannot see the complete definition. This makes
the change difficult if the definition is complex. It may be more convenient to
delete the entire definition using a DROP statement and then store a modified
definition using a DEFINE RECORDPROC statement.

ALTER UPDATE
Use the ALTER UPDATE statement to modify a stored update definition. You can
add, change, or delete:
v The SECTION clause
v The WHERE clause
v Parts of the LET, GROUP BY, or SET clauses
v The APPLY SCHEDULE, DISTRIBUTE, or MERGE clauses

This description assumes that you are familiar with update definitions and the
DEFINE UPDATE statement. So, it explains only how ALTER UPDATE modifies
the update definition. It does not explain what the modification means. The syntax
diagram shows all the clauses that you can specify, but they are explained only as
much as it is needed to tell what is altered. See “DEFINE RECORDPROC” on page
11-28 for more information.

Syntax

►► ALTER UPDATE update-name SECTION section-name
NONE

WHERE condition
NONE

apply-schedule-clause
APPLY SCHEDULE NONE

distribute-clause
DISTRIBUTE NONE
LET identifier = expression

NONE
GROUP BY column-name = expression

NONE
SET column-name = accumulation

NONE
merge-clause

MERGE NONE

►◄

ALTER RECORDPROC DRL2CIC1 LANGUAGE C;

Figure 11-3. ALTER RECORDPROC statement

ALTER RECORDPROC

Chapter 11. Log collector language statements 11-7



accumulation:

SUM (expression)
MIN (expression)
MAX (expression)
COUNT (expression)
FIRST (expression)
LAST (expression)
AVG (expression, column-name)
PERCENTILE (expression, column-name, integer-constant)

apply-schedule-clause:

APPLY SCHEDULE expression TO column-name, column-name, column-name ►

► STATUS identifier

distribute-clause:

DISTRIBUTE ▼

,

field-name
column-name

BY expression START expression ►

► END expression TIMESTAMP identifier INTERVAL identifier

merge-clause:

MERGE ( column-name = expression , column-name = expression , ►

► column-name = expression , column-name = expression )

Parameters
update-name

Identifies the update definition that you want to alter.

SECTION section-name
Adds or replaces the SECTION clause.

SECTION NONE
Deletes the SECTION clause.

WHERE condition
Adds or replaces the WHERE condition.

WHERE NONE
Deletes the WHERE condition.

apply-schedule-clause
Adds or replaces the APPLY SCHEDULE clause. The clause is specified as
in the DEFINE UPDATE statement.

APPLY SCHEDULE NONE
Deletes the APPLY SCHEDULE clause.

ALTER UPDATE

11-8 Tivoli Decision Support for z/OS: Language Guide and Reference



distribute-clause
Adds or replaces the DISTRIBUTE clause. The clause is specified as in the
DEFINE UPDATE statement.

DISTRIBUTE NONE
Deletes the DISTRIBUTE clause.

LET identifier = expression
Adds or replaces the specification of identifier in the LET clause.

LET identifier = NONE
Deletes the specification of identifier from the LET clause.

GROUP BY column-name = expression
Adds or replaces the specification of column column-name in the GROUP
BY clause.

GROUP BY column-name = NONE
Deletes the specification of column column-name from the GROUP BY
clause.

SET column-name = accumulation
Adds or replaces the specification of column column-name in the SET
clause.

SET column-name = NONE
Deletes the specification of column column-name from the SET clause.

merge-clause
Adds or replaces the MERGE clause. The clause is specified as in the
DEFINE UPDATE statement.

MERGE NONE
Deletes the MERGE clause.

Examples
The update definition UPD_WKLD applies to records of type WKLD_REC, which
contain a field WRKFLD. Assume that you want to change UPD_WKLD so that it
will only apply to WKLD_REC records when WRKFLD is not equal to 120. Use
this ALTER UPDATE statement to change the condition to which UPD_WKLD
applies:

For more information about using the ALTER UPDATE statement, see “Changing
and deleting update definitions” on page 5-27.

Usage
When you use the ALTER UPDATE statement, you specify only a part of the
update definition. You cannot see the complete definition. This makes the change
difficult if the definition is complex. It may be more convenient to delete the entire
definition using a DROP statement and then store a modified definition using a
DEFINE UPDATE statement.

ALTER UPDATE UPD_WKLD
WHERE WRKFLD <> 120;

Figure 11-4. ALTER UPDATE statement

ALTER UPDATE

Chapter 11. Log collector language statements 11-9



COLLECT
Use the COLLECT statement to collect log data. The processing is controlled by the
stored definitions of the log, records, and updates.

Syntax

►► COLLECT log-name
FROM file-name WHERE condition

►

►

▼

,

INCLUDE table-name
LIKE string-constant

►

►

▼

,

EXCLUDE table-name
LIKE string-constant

REPROCESS
►

►
ON TIMESTAMP OVERLAP SKIP

STOP
PARTITION DIRECT SCAN

►

►
BUFFER FULL

COMMIT AFTER END OF FILE
integer-constant RECORDS
BUFFER FULL ONLY

►

►
M

BUFFER SIZE integer-constant K
BREAK

ON OVERFLOW CONTINUE

►◄

Parameters
log-name

Is the name of a stored log definition. It identifies the type of log to be
collected.

FROM file-name
Names the DD statement that specifies the log data set to be collected. The
default is DRLLOG.

WHERE condition
Limits processing to those records for which the condition is true. Any
identifiers used in the condition must be names of log header fields. If there
is a log procedure, the condition applies to the records produced by the log
procedure. Otherwise, the condition is applied to the records from the log.
The condition is not applied to the records produced by record procedures.

INCLUDE
Limits collect to update only the specified tables. If you specify INCLUDE,
the log collectorlog collector does not update any other tables associated
with this log definition.

COLLECT

11-10 Tivoli Decision Support for z/OS: Language Guide and Reference



table-name
Is the name of a table to be included.

LIKE string-constant
Specifies a group of tables to be included. The tables are those with
names matching the pattern specified as the string-constant. The
pattern matching rules are defined in “Pattern matching” on page
9-11. If the pattern contains a period (.), the table prefix must
match the part before the period, and the rest of the table name
must match the part after the period. For example, the pattern
DRL.CICS% includes all tables whose names start with CICS and
have DRL as the prefix.

If the pattern does not contain a period, the prefix must be the
current user ID, and the rest of the name must match the whole
pattern.

EXCLUDE
Prevents collect from updating the specified tables. If you specify
EXCLUDE, the log collectorlog collector updates all other tables associated
with this log definition.

table-name
Is the name of a table to be included.

LIKE string-constant
Specifies a group of tables to be excluded, using the same rules as
for INCLUDE.

REPROCESS
Instructs the log collectorlog collector to collect data from the log data set
in its entirety even if that data set has already been partially or completely
processed.

ON TIMESTAMP OVERLAP SKIP
Instructs the log collector to collect data from a log with a
matching DATASET_NAME entry in the DRLLOGDATASETS
system table, skipping records included in the range indicated by
the FIRST_TIMESTAMP and LAST_TIMESTAMP entries in
DRLLOGDATASETS. This option can only be specified if a
TIMESTAMP expression was specified in the definition for the log
being collected.

Consider using this option if the log management procedures at
your site allow for the possibility of logs with duplicate data set
names being created with later logs supplementing or replacing the
data from earlier logs, and you want the data in the later logs to be
processed automatically.

For example, suppose log SMF.DAILY.D001 is created, but is
incomplete, and only contains data from 8:00am to 11:00am. After
the data has been collected by TDS, SMF.DAILY.D001 is re-created
containing a full day's data.

If you collect this re-created log without specifying ON
TIMESTAMP OVERLAP SKIP then the collect will succeed because
the logs do not have matching first records, but data will be
duplicated for the period that the logs overlap. If you specify ON
TIMESTAMP OVERLAP SKIP when you collect the re-created log
then the collect will succeed, but the log records from 8:00 am and
11:00 am will not be reprocessed.

COLLECT

Chapter 11. Log collector language statements 11-11



If both REPROCESS and ON TIMESTAMP OVERLAP SKIP are
specified then the log will be processed as if only REPROCESS had
been specified.

ON TIMESTAMP OVERLAP STOP
Instructs the log collector to stop processing a log if the first record
identified has a timestamp that is earlier than the
LAST_TIMESTAMP entry in the DRLLOGDATASETS system table
for a previously collected log with the same data set name.

Consider using this option if the log management procedures at
your site allow for the possibility of logs with duplicate data set
names being created that will not contain matching first records,
and you want this to be treated as an error condition.

Note:

1. When ON TIMESTAMP OVERLAP SKIP is specified the log
collector simply skips the records for any time period that
overlaps a previously collected log with the same data set
name. The results of this process may not always match exactly
the results obtained when the same overall set of records is
collected in a single pass.

2. ON TIMESTAMP OVERLAP SKIP cannot be used in
conjunction with collection methods that use REPROCESS with
INCLUDE/EXCLUDE to process the same log data set in
multiple passes. If ON TIMESTAMP OVERLAP SKIP is used in
this situation then skip processing will be performed
successfully for the first recollect of the log, but if that collect is
successful then all subsequent collects will skip over the entire
log.

3. ON TIMESTAMP OVERLAP SKIP is mutually exclusive with
REPROCESS. The REPROCESS option is intended for
reprocessing a previously processed set of data. ON
TIMESTAMP OVERLAP is intended for processing (recreated)
data that overlaps previously processed data.

PARTITION
Specifies when COLLECT must collect on the PARTITIONING feature only.
It allows jobs which fill in different partitions of the same tables to run in
parallel to improve COLLECT performance. Do not use this parameter in
COLLECT jobs that fill in NON-PARTITIONED tables.

Specifying the PARTITION parameter also instructs the log collector to use
the DIRECT algorithm for database updates. If you set both the
PARTITION and SCAN parameters, the SCAN parameter is overridden
and the DIRECT algorithm is used.

DIRECT or SCAN
Instructs the log collector to use either the DIRECT or the SCAN algorithm
to update the DB2 database. This means that the log collector does not run
a query to select the algorithm to be used, and performance is therefore
improved.

To decide which parameter to specify, refer to message DRL0356I in the
output log of previous collects that were run without specifying either
DIRECT or SCAN.

If you set both the SCAN and PARTITION parameters, the SCAN
parameter is overridden and the DIRECT algorithm is used.

COLLECT

11-12 Tivoli Decision Support for z/OS: Language Guide and Reference



If you do not specify DIRECT (or PARTITION) or SCAN then the log
collector will run a query to select which algorithm to use. In this case if
the rows in the collect buffer do not match with any rows in the database
for a table, an insert algorithm is used.

COMMIT AFTER
Specifies when the log collectorlog collector should execute COMMIT to
make the database updates permanent. (The log collectorlog collector
always writes its internal buffer to the DB2 database before issuing
COMMIT, but it may write the buffer to the database without committing
the updates.)

If a collect abends after a commit, at least part of the data set has been
successfully processed. The log collectorlog collector can automatically
resume collecting data from the log at the point where the log collectorlog
collector made the commit.

The possible options follow.

BUFFER FULL
Commit in each of these situations:
v After the internal buffer was filled and written to the database
v At the end of each concatenated log data set
v After the entire input was processed

END OF FILE
Commit only after the entire input has been processed.

integer-constant RECORDS
Commit only after processing the number of records specified by
the integer-constant. This option results in the longest execution
time, compared with other COMMIT AFTER options.

BUFFER FULL ONLY
Commit in each of these situations:
v After the internal buffer was filled and written to the database
v After the entire input was processed

This option will normally result in a shorter execution time when
processing concatenated log data sets.

BUFFER SIZE integer-constant
Specifies the size (in bytes) of the internal collect buffer. The default is 10M
bytes. The minimum allowed value is 10K bytes. The maximum size of the
internal collect buffer is limited to the virtual storage available when the
log collectorlog collector executes. If you specify a BUFFER SIZE that
exceeds the available virtual storage, the log collectorlog collector abends.

Note: The log collector sometimes requires more buffer space than you
specify. It abends if it cannot obtain the extra space.

ON OVERFLOW
Specifies the action to be taken in case of an overflow. An overflow is a
situation when a numeric value accumulated in a table column becomes
too large for that column. The possible options follow.

BREAK
Stop data collection. Do not update the database.

CONTINUE
Reset the column to 0, write the lost value to the DRLDUMP file,
and continue data collection.

COLLECT

Chapter 11. Log collector language statements 11-13



Examples
Assume that you want to update only two tables, NETWORK_SESSIONS and
DB2_ACCOUNTING, with data for the MVS1 system from an SMF log data set
named by the SMFLOG DD statement. You also want to write the internal buffer
to the database and commit the change after every 5 000 records in the log data set
have been processed.

For more information about using the COLLECT statement, see Chapter 6,
“Collecting log data,” on page 6-1.

Usage
You can specify both INCLUDE and EXCLUDE on a COLLECT statement. For
example, INCLUDE LIKE 'DRL.CICS%' EXCLUDE DRL.CICS_APPL_H includes all
CICS tables except DRL.CICS_APPL_H.

COMMENT ON
Use the COMMENT ON statement to add or replace comments in stored
definitions. You can add or replace comments for:
v Log definitions
v Record definitions
v Record procedure definitions
v Update definitions

Syntax

►► COMMENT ON LOG log-name
RECORD record-name
FIELD record-name.field-name
RECORDPROC procedure-name
UPDATE update-name

IS string-constant ►◄

Parameters
LOG log-name

Specifies that the comment applies to the log definition log-name.

RECORD record-name
Specifies that the comment applies to the record definition record-name.

FIELD record-name.field-name
Specifies that the comment applies to the field field-name in the record
definition record-name.

RECORDPROC procedure-name
Specifies that the comment applies to the record procedure definition
procedure-name.

COLLECT SMF
FROM SMFLOG
WHERE SMFSID = ’MVS1’
INCLUDE NETWORK_SESSIONS, DB2_ACCOUNTING
COMMIT AFTER 5000 RECORDS;

Figure 11-5. COLLECT statement

COLLECT

11-14 Tivoli Decision Support for z/OS: Language Guide and Reference



UPDATE update-name
Specifies that the comment applies to the update definition update-name.

IS string-constant
Specifies the comment text, which can be any character string up to 254
characters long.

Examples
Assume you want to add a comment to the field WRKLD in the record type
HOUR_REC. Use this COMMENT ON statement to add the comment:

Usage
v The comments stored using the COMMENT ON statement can be viewed using

the administration dialog. (See the , SH19-6816.)
v To store comments for the DB2 tables and their columns, use the COMMENT

ON statement that is part of SQL.
v Notice that the double minus sign (--) comments and the slash asterisk (/*)

asterisk slash (*/) comments are not stored with your definitions.

DEFINE LOG
Use the DEFINE LOG statement to define a log type.

Syntax

►► DEFINE LOG log-name
VERSION string-constant

►

►

▼

,

HEADER ( field )

TIMESTAMP expression
►

►
FIRST RECORD condition LAST RECORD condition

►

►
LOGPROC procedure-name procedure-parms

►◄

procedure-parms:

ASM
LANGUAGE ASML

C

PARM expression

COMMENT ON FIELD HOUR_REC.WRKLD
IS ’New definition for the WRKLD field’;

Figure 11-6. COMMENT ON statement

COMMENT ON

Chapter 11. Log collector language statements 11-15



field:

field-name
* OFFSET integer-constant

►

►
LENGTH integer-constant

*
field-format

Parameters
log-name

The name of the log type being defined. It must be an identifier, at most 16
bytes long. All log types defined to the log collectorlog collector must have
distinct names.

VERSION string-constant
The string specified by the string-constant is stored together with the
definition, to identify the statement that was used to create the definition.
The string can be at most 18 bytes long. Omitted VERSION means the
same as specifying VERSION ’.

If the stored definition is later altered by means of an ALTER LOG
statement, its version identification is changed to 'ALTERED'.

Version names are used by the Tivoli Decision Support for z/OS
installation program to decide which definitions should be replaced. All
definitions supplied by IBM have version names starting with 'IBM'. To
ensure correct installation of new releases, do not use such names for your
own definitions. See Figure 11-7 on page 11-18 for an example of how
VERSION is used by IBM. Refer to the Administration Guide and
ReferenceAdministration Guide and Reference for information on how to use
VERSION.

HEADER (field, ... )
Defines the fields that are common to all records. There is a limit of 2 000
fields in a header definition.

field Defines one field.

This general rule applies to all fields.

The LENGTH and OFFSET (explicit or default) define a field as an
area so many bytes long, starting at a specific place in the record. If
the record is too short to contain ALL bytes of a field, the field is
considered absent and a reference to it produces null value.

The above rule has one exception: LENGTH *. The asterisk length
means that the field extends up to the end of the record. The field
is absent if the record is too short to contain the first byte of the
field.

field-name
The name of the field. It can be any identifier. Field names
must be unique within a header.

OFFSET integer-constant
Defines the offset of the field in the record. Notice that
offsets in varying-length records (record format V, VB, or
VBS) include the 4-byte record descriptor word.

DEFINE LOG

11-16 Tivoli Decision Support for z/OS: Language Guide and Reference



If you omit OFFSET, the field starts at the end of the field
defined just before it. The preceding field cannot have an
asterisk length. If you omit the offset for the first field in
the list, that field begins at offset 0.

LENGTH integer-constant
Defines the length of the field in bytes. The allowed
lengths depend on the format of the field. See Table 11-1 on
page 11-23; the Length column states the possible length(s)
of the field.

If you omit LENGTH, the log collectorlog collector uses the
default length depending on the field format. If the Length
column in Table 11-1 on page 11-23 specifies a single value,
this is the default. Otherwise the default is stated in the
column.

LENGTH *
Indicates that the field extends up to the end of the record.

field-format

Specifies the format of the data contained in the field. The
possible values of field-format are listed in Table 11-1 on
page 11-23, in the Field format column. The Data type
column states the data type to which the log collectorlog
collector automatically converts the content of the field
when it uses that field.

If you omit the field format, the field format is HEX.

TIMESTAMP expression
Describes how the timestamp of the records is derived from the fields in
the header. The log collectorlog collector prints the timestamp of the first
and last processed records in the log data set (and saves these timestamps
in a system table) to identify which time period the log covers.

The result of expression must be a timestamp. Any identifiers used in the
expression must be names of log header fields.

FIRST RECORD condition
Specifies a condition that the first record in the log data set should satisfy.
If this condition is not met, the log collectorlog collector gives a warning
message.

Any identifiers used in the condition must be names of log header fields.

LAST RECORD condition
Specifies a condition that the last record in the log data set should satisfy.
If this condition is not met, the log collectorlog collector gives a warning
message.

Any identifiers used in the condition must be names of log header fields.

LOGPROC procedure-name
Identifies the log procedure for the log. The log procedure must be a load
module, available in a load library under the name procedure-name.

LANGUAGE
Specifies the interface to the procedure: the language, linkage
convention, and parameters.

ASM The procedure is written in Assembler and is called using

DEFINE LOG

Chapter 11. Log collector language statements 11-17



standard System/390 linking conventions. It returns length
of the output record in a field within the record.

ASML The procedure is written in Assembler and is called using
standard System/390 linking conventions. It returns length
of the output record in a parameter.

C The procedure is written in C and is called using persistent
C environment. It returns length of the output record in a
field within the record.

See Appendix A, “Log and record procedures,” on page A-1 for
details.

PARM expression
Specifies an expression that the log collectorlog collector evaluates
and passes to the log procedure the first time it is called. The
procedure must understand the format and interpret the value
derived from the expression.

The expression cannot contain identifiers. The result of expression
must be an integer, a floating-point number, or a character string.

Examples
Define a log type named SMF, identifying fields where the log collectorlog collector
can obtain timestamp information. Also, tell the log collectorlog collector how to
determine the first and last records in this log.

For more information about using the DEFINE LOG statement, see “Defining a
log” on page 2-3 and “Verifying log data sets during data collection” on page 6-4.

DEFINE PURGE
Use the DEFINE PURGE statement to store a purge condition. The stored condition
is used by the PURGE statement to determine which data should be purged (see
“PURGE” on page 11-47).

Syntax

DEFINE LOG XMP
VERSION ’IBM.120’
HEADER(XMPLEN LENGTH 2 BINARY,

XMPSEG LENGTH 2 BINARY,
XMPFLG LENGTH 1 BIT,
XMPRTY LENGTH 1 BINARY,
XMPTME TIME(1/100S),
XMPDTE DATE(0CYYDDDF),
XMPSID CHAR(4),
XMPSSI CHAR(4),
XMPSTY LENGTH 2 BINARY)

TIMESTAMP TIMESTAMP(XMPDTE,XMPTME)
FIRST RECORD XMPRTY = 2
LAST RECORD XMPRTY = 3;

Figure 11-7. DEFINE LOG statement

DEFINE LOG

11-18 Tivoli Decision Support for z/OS: Language Guide and Reference



►► DEFINE PURGE
VERSION string-constant

FROM table-name ►

►
WHERE sql-condition

►◄

Parameters
VERSION string-constant

The string specified by the string-constant is stored together with the purge
condition, to identify the statement that was used to create the condition.
The string can be at most 18 bytes long. Omitted VERSION means the
same as specifying VERSION ’.

Version names are used by the Tivoli Decision Support for z/OS
installation program to decide which definitions should be replaced. All
definitions supplied by IBM have version names starting with 'IBM'. To
ensure correct installation of new releases, do not use such names for your
own definitions. See Figure 11-8 for an example of how VERSION is used
by IBM. Refer to the Administration Guide and ReferenceAdministration Guide
and Reference for information on how to use VERSION.

FROM table-name
Specifies the name of the table to which the purge condition applies.

WHERE sql-condition
Specifies which data in the table should be deleted by PURGE. The
sql-condition is executed by the database manager.

The sql-condition must be a valid SQL search condition for the table
table-name, and its individual tokens must be recognized by the log
collectorlog collector.

Examples
Write a DEFINE PURGE statement to define conditions so that the log collectorlog
collector deletes data in the IMS_TRANSACTIONS_H table when the
APPLICATION is not equal to ACCT and the date in the data is more than 7 days
old, or when the APPLICATION is ACCT and the data is more than 14 days old:

Usage
You can have at most one purge condition for each table. If you execute a DEFINE
PURGE statement for a table that already has a purge condition, the new condition
replaces the old condition.

DEFINE RECORD
Use the DEFINE RECORD statement to define a record type.

DEFINE PURGE
VERSION ’IBM.120’
FROM IMS_TRANSACTIONS_H
WHERE APPLICATION <> ’ACCT’ AND DATE < CURRENT DATE - 7 DAYS

OR APPLICATION = ’ACCT’ AND DATE < CURRENT DATE - 14 DAYS;

Figure 11-8. Example of the DEFINE PURGE statement

DEFINE PURGE

Chapter 11. Log collector language statements 11-19



Syntax

►► DEFINE RECORD record-name
VERSION string-constant

IN LOG log-name ►

►
BUILT BY procedure-name IDENTIFIED BY condition

►

►

▼

,

FIELDS ( field )

SECTION section
►◄

section:

section-name
IN SECTION section-name PRESENT IF condition

►

►
OFFSET expression LENGTH expression NUMBER expression

*

►

►
REPEATED

▼

,

FIELDS ( field )

field:

field-name
* OFFSET integer-constant

►

►
LENGTH integer-constant

*
field-format

Parameters
record-name

The name of the record type being defined. It can be any identifier, except
that it cannot both start and end with an asterisk (*). All record types
defined to the log collector must have distinct names.

VERSION string-constant
The string specified by the string-constant is stored together with the
definition, to identify the statement that was used to create the definition.
The string can be at most 18 bytes long. Omitted VERSION means the
same as specifying VERSION ’.

If the stored definition is later altered by means of an ALTER RECORD
statement, its version identification is changed to 'ALTERED'. Version
names are used by the Tivoli Decision Support for z/OS installation
program to decide which definitions should be replaced. All definitions
supplied by IBM have version names starting with 'IBM'. To ensure correct
installation of new releases, do not use such names for your own
definitions. See Figure 11-9 on page 11-27 for an example of how VERSION

DEFINE RECORD

11-20 Tivoli Decision Support for z/OS: Language Guide and Reference



is used by IBM. Refer to the Administration Guide and Reference for
information on how to use VERSION.

IN LOG log-name
Indicates that this record is encountered when processing log data sets of
type log-name (and only such logs). The record is one of the records in the
log, or is built by a record procedure from one of the records in the log (or
from other records built from these).

BUILT BY procedure-name
Indicates that this record does not appear in the log data set, but is built
by the record procedure procedure-name. An omitted BUILT BY clause
means that the record appears in the log data set.

IDENTIFIED BY condition
Tells how to distinguish records of this type from other records. A record is
of the type record-name if the condition is true. A specific record may satisfy
the IDENTIFIED BY condition of several record definitions. The log
collector uses then only one of these definitions (undefined which one).

Any identifiers used in the condition must be names of fields defined
directly in the record (not in the sections within the record). An omitted
IDENTIFIED BY clause is equivalent to specifying a condition that is true
for every record.

SECTION section
Defines one section. There is a limit of 300 sections in a record. These
clauses describe a section:

section-name
The name of the section. It can be any identifier. Section names
must be unique within a record type.

IN SECTION section-name
Indicates that the section being defined is a subsection of the
section named section-name. If you omit the IN clause, the section is
a section of the record. The section section-name must be defined
earlier in this record definition.

PRESENT IF condition
Indicates that the section is optional. The section is absent if the
condition is not true. The section may be absent even if the
condition is true, if the containing section (or record) is too short to
contain the first byte of the section.

Any identifiers used in the condition must be names of fields in the
section being defined, in the containing sections, in the record, or
in previously defined non-repeated subsections of these.

OFFSET expression
Defines the offset of the section within the containing section (or
record). Notice that offsets in varying-length records (record format
V, VB, or VBS) include the 4-byte record descriptor word.

The expression must specify an integer ≥ 0. Any identifiers used in
the expression must be names of fields in the containing sections, in
the record, or in previously defined non-repeated subsections of
these.

If you omit OFFSET, the section starts at the end of the most
recently defined section with the same IN SECTION attribute. That

DEFINE RECORD

Chapter 11. Log collector language statements 11-21



section cannot be a repeated section. If no section with the same IN
SECTION attribute has been previously defined, an omitted
OFFSET means offset 0.

LENGTH expression
Defines the length of the section.

The expression must specify an integer > 0. Any identifiers used in
the expression must be names of fields in the section being defined,
in the containing sections, in the record, or in previously defined
non-repeated subsections of these. If you omit LENGTH, the log
collector assumes the minimum length needed to contain all
named fields specified for this section.

If the containing section (or record) is too short to contain the
whole section, the log collector assumes that the section extends up
to the end of the containing section (or record). If the containing
section (or record) is too short to contain the first byte of the
section, the section is absent.

NUMBER expression
Defines the number of occurrences of the section.

The expression must specify an integer ≥ 0. Any identifiers used in
the expression must be names of fields in the containing sections, in
the record, or in previously defined non-repeated subsections of
these.

An omitted NUMBER clause means the same as NUMBER 1.

NUMBER *
Defines the number of occurrences of the section to be as many
occurrences as the containing section (or record) can hold.

REPEATED
Means that the section is repeated. If you omit REPEATED, the
section is not repeated.

FIELDS ( field, ... )
Defines all fields of the record or section. There is a limit of 2 000 fields in
a record.

field Defines one field.

This general rule applies to all fields. The LENGTH and OFFSET (explicit
or default) define a field as an area so many bytes long, starting at a
specific place in the record (or section). If the record (or section) is too
short to contain ALL bytes of a field, the field is considered absent and a
reference to it produces null value.

The above rule has one exception: LENGTH *. The asterisk length means
that the field extends up to the end of the record (or section). The field is
absent if the record (or section) is too short to contain the first byte of the
field.

field-name
The name of the field. It can be any identifier. Field names must be
unique within a record type.

OFFSET integer-constant
Defines the offset, in bytes, of the field in the record (or section).
Notice that offsets in varying-length records (record format V, VB,
or VBS) include the 4-byte record descriptor word.

DEFINE RECORD

11-22 Tivoli Decision Support for z/OS: Language Guide and Reference



If you omit OFFSET, the field starts at the end of the field defined
just before it. The preceding field cannot have an asterisk length. If
you omit the offset for the first field in the list, that field begins at
offset 0.

LENGTH integer-constant
Defines the length of the field in bytes. The allowed lengths
depend on the format of the field. See Table 11-1; the Length
column states the possible length(s) of the field.

If you omit LENGTH, the log collector uses the default length
depending on the field format. If the Length column in Table 11-1
specifies a single value, this is the default. Otherwise the default is
stated in the column.

LENGTH *
Indicates that the field extends up to the end of the containing
structure (record or section).

field-format
Specifies the format of the data contained in the field. The possible
values of field-format are listed in Table 11-1, in the Field format
column. The Data type column states the data type to which the
log collector automatically converts the content of the field when it
uses that field.

If you omit the field format, the field format is HEX.

Table 11-1. Field formats

Field format Contents
Length
in bytes Data type

BINARY BINARY
SIGNED BINARY
UNSIGNED

Binary integer represented
according to System/390
architecture. The default is
SIGNED for lengths 2, 4, and
8, and UNSIGNED for lengths
1 and 3.

1,2,3,4,8
default 4

Integer for SIGNED of
length≤4 and
UNSIGNED of
length≤3;

otherwise floating-point

EXTERNAL HEX A string of bits representing an
integer in hexadecimal
characters.

2,4,8
default 8

String

EXTERNAL
INTEGER

A string of characters,
representing an integer in the
same format as for integer
constants. Optional sign,
leading and trailing blanks are
allowed.

1 - 32
default 8

Integer

DECIMAL(p,s)

where 1 ≤ p≤ 31 and
0 ≤ s≤ p

Packed decimal number of
System/390 architecture, with
precision p and scale s. The
precision is the total number of
decimal digits. Odd p means a
signed number; even p means
an unsigned number. The scale
is the number of digits after
the decimal point.

Integer
part of
(p+1)/2

Integer if s=0 and p≤9;
otherwise floating-point

DEFINE RECORD

Chapter 11. Log collector language statements 11-23



Table 11-1. Field formats (continued)

Field format Contents
Length
in bytes Data type

ZONED(p,s)

where 1 ≤ p≤ 31, and
0 ≤ s≤ p

Unsigned zoned decimal
number of System/390
architecture, with precision p
and scale s. The precision is
the total number of decimal
digits. The scale is the number
of digits after the decimal
point.

p Integer if s=0 and p≤9;
otherwise floating-point

FLOAT A floating-point number of
System/390 architecture, short
(4 bytes) or long (8 bytes).

4, 8
default 8

Floating-point

EXTERNAL FLOAT A string of characters
expressing a floating-point
number in the same format
used for floating-point
constants. Leading and trailing
blanks are allowed.

1 - 32
default 8

Floating-point

CHAR A string of characters. May
include sequences of
double-byte characters,
enclosed between shift-out and
shift-in characters.

1 - 254
default 1

String

CHAR(n)

where 1 ≤ n≤ 254

A string of characters
occupying n bytes. May
include sequences of
double-byte characters,
enclosed between shift-out and
shift-in characters.

n String

CHAR(*) A string of characters,
extending up to the end of the
containing structure. If the
string is longer than 254 bytes,
it is truncated. This format is
only allowed with LENGTH *.

* (1-254) String

VARCHAR A string of characters
including length information.
The first two bytes contain the
length l of the data as a binary
integer; the remaining bytes
contain the data itself. The
length l may be 0, and cannot
exceed the length of the field
minus 2. The data portion of
the string may include
sequences of double-byte
characters, enclosed between
shift-out and shift-in
characters.

3-256
default 8

String

BIT A string of bits. Converted to
string of characters "0" and "1"
representing individual bits.

1 - 31
default 1

String

DEFINE RECORD

11-24 Tivoli Decision Support for z/OS: Language Guide and Reference



Table 11-1. Field formats (continued)

Field format Contents
Length
in bytes Data type

BIT(n)

where 8 ≤ n≤ 248, n
multiple of 8

A string of n bits. Converted to
string of characters "0" and "1"
representing individual bits.

n/8 String

HEX A string of bits. Converted to
string of characters "0" through
"F" representing the string in
hexadecimal notation.

1 - 127
default 1

String

DATE(0CYYDDDF) Date in the format 0cyydddF
(packed), where c indicates the
century (0=1900, 1=2000), yy is
the year within the century,
ddd is the day within the year,
and F can have any value. (F is
ignored and is not checked to
be a valid decimal sign).

4 Date

DATE(YYYYDDDF) Date in the format yyyydddF
(packed), where yyyy is the
year, ddd is the day within the
year, and F can have any
value. (F is ignored and is not
checked to be a valid decimal
sign).

4 Date

DATE(YYDDDF) Date in the format yydddF
(packed), where yy is the year,
ddd is the day within the year,
and F can have any value. (F is
ignored and is not checked to
be a valid decimal sign).

3 Date

DATE(CYYMMDDF) Date in the format cyymmddF
(packed), where c indicates the
century (0=1900, 1=2000), yy is
the year within the century,
mm is the month, dd is the day
of month, and F can have any
value. (F is ignored and is not
checked to be a valid decimal
sign).

4 Date

DATE(YYMMDD) Date as character string
yymmdd, where yy is the year,
mm is the month, and dd is the
day. yy≥50 means year 19yy;
yy<50 means year 20yy.

6 Date

DATE(MMDDYY) Date as character string
mmddyy, where mm is the
month, dd is the day, and yy is
the year.

6 Date

DATE(MMDDYYYY) Date as character string
mmddyyyy, where mm is the
month, dd is the day, and yyyy
is the year.

8 Date

DEFINE RECORD

Chapter 11. Log collector language statements 11-25



Table 11-1. Field formats (continued)

Field format Contents
Length
in bytes Data type

TIME(1/100S) A 32-bit binary integer
representing time in
hundredths of a second
elapsed since hour 0.

4 Time

TIME(HHMMSSTF) Time in the format hhmmsstF
(packed), where hh is hours,
mm is minutes, ss is seconds, t
is tenths of a second, and F
can have any value. (F is
ignored and is not checked to
be a valid decimal sign).

4 Time

TIME(0HHMMSSF) Time in the format 0hhmmssF
(packed), where hh is hours,
mm is minutes, ss is seconds,
and F can have any value. (F is
ignored and is not checked to
be a valid decimal sign).

4 Time

TIME(HHMMSSXF) Time in the format hhmmssxF
(packed), where hh is hours,
mm is minutes, ss is seconds, x
is sixteenths of a second, and F
can have any value. (F is
ignored and is not checked to
be a valid decimal sign).

4 Time

TIME(HHMMSSTH) Time in the format hhmmssth
(packed), where hh is hours,
mm is minutes, ss is seconds,
and th is hundredths of a
second.

4 Time

TIME(HHMMSSU6) Time in the format
hhmmssuuuuuu (packed), where
hh is hours, mm is minutes, ss
is seconds, and uuuuuu is
microseconds.

6 Time

TIME(HHMMSS) Time as character string
hhmmss, where hh is hours, mm
is minutes, and ss is seconds.

6 Time

INTV(MMSSTTTF) Time duration in the format
mmsstttF (packed), where mm
is minutes of duration, ss is
seconds, ttt is milliseconds,
and F can have any value. The
duration is converted to
milliseconds and expressed as
an integer. (F is ignored and is
not checked to be a valid
decimal sign).

4 Integer

DEFINE RECORD

11-26 Tivoli Decision Support for z/OS: Language Guide and Reference



Table 11-1. Field formats (continued)

Field format Contents
Length
in bytes Data type

TIMESTAMP(TOD) Date and time in System/390
time-of-day (TOD) clock
format: the number of
microseconds since the start of
year 1900, expressed as a
binary number, with the
highest bit position
representing 251.

4,8
default 8

Timestamp

Examples
Figure 11-9 shows a DEFINE RECORD statement for a simple record without
sections.

For more information about using the DEFINE RECORD statement, see “Defining
a record” on page 2-3 and “Defining sections within a record” on page 3-3.

Usage
Using facilities of the log collector language, you can process date/time formats
other than those supported in the DEFINE RECORD statement. As an example,
suppose that your records contain date in the form of a character string yyddd,
where yy are the last two digits of year, and ddd is day number within the year.
The date starts at offset 36 within the record. To process the date, specify these
fields in your DEFINE RECORD statement:

YY OFFSET 36 LENGTH 2 CHAR,
DDD OFFSET 38 LENGTH 3 EXTERNAL INTEGER,

To obtain the date, use this expression in your DEFINE UPDATE statement:
DATE(’19’ || YY || ’-01-01’) + (DDD-1) DAYS

Another example of processing an unsupported field format is given in “Example
log procedures” on page A-8.

DEFINE RECORD XMPACCT_01
VERSION ’IBM.120’
IN LOG VMACCT
IDENTIFIED BY XMPCODE=’01’
FIELDS
(XMPUSER OFFSET 0 LENGTH 8 CHAR,
XMPNUM OFFSET 8 LENGTH 8 CHAR,
XMPDATE OFFSET 16 LENGTH 6 DATE(MMDDYY),
XMPTIM OFFSET 22 LENGTH 6 TIME(HHMMSS),
XMPCONT OFFSET 28 LENGTH 4 BINARY,
XMPTIME OFFSET 32 LENGTH 4 BINARY,
XMPVTIM OFFSET 36 LENGTH 4 BINARY,
XMPPGRD OFFSET 40 LENGTH 4 BINARY,
XMPPGWT OFFSET 44 LENGTH 4 BINARY,
XMPIOCT OFFSET 48 LENGTH 4 BINARY,
XMPPNCH OFFSET 52 LENGTH 4 BINARY,
XMPLINS OFFSET 56 LENGTH 4 BINARY,
XMPCRDS OFFSET 60 LENGTH 4 BINARY,
XMPVECTM OFFSET 64 LENGTH 4 BINARY,
XMPVVECT OFFSET 68 LENGTH 4 BINARY,
* OFFSET 72 LENGTH 6 CHAR,
XMPCODE OFFSET 78 LENGTH 2 CHAR);

Figure 11-9. Example of a DEFINE RECORD statement

DEFINE RECORD

Chapter 11. Log collector language statements 11-27



DEFINE RECORDPROC
Use the DEFINE RECORDPROC statement to specify record procedure, that is, a
procedure that the log collector calls each time it processes a record of a particular
type.

Syntax

►► DEFINE RECORDPROC procedure-name
VERSION string-constant

FOR ►

► ▼

,

record-name procedure-parms ►◄

procedure-parms:

ASM PARM expression
LANGUAGE ASML

C

Parameters
procedure-name

The name of the record procedure. The record procedure must be a load
module, available in a load library under the name procedure-name.

VERSION string-constant
The string specified by the string-constant is stored together with the
definition, to identify the statement that was used to create the definition.
The string can be at most 18 bytes long. Omitted VERSION means the
same as specifying VERSION ’.

If the stored definition is later altered by means of an ALTER
RECORDPROC statement, its version identification is changed to
'ALTERED'. Version names are used by the Tivoli Decision Support for
z/OS installation program to decide which definitions should be replaced.
All definitions supplied by IBM have version names starting with 'IBM'. To
ensure correct installation of new releases, do not use such names for your
own definitions. See Figure 11-10 on page 11-29 for an example of how
VERSION is used by IBM. Refer to the Administration Guide and Reference
for information on how to use VERSION.

FOR record-name , ...
Enumerates record types that this record procedure processes.

LANGUAGE
Specifies the interface to the procedure: the language, linkage convention,
and parameters.

ASM The procedure is written in Assembler and is called using standard
System/390 linking conventions. It returns length of the output
record in a field within the record.

DEFINE RECORDPROC

11-28 Tivoli Decision Support for z/OS: Language Guide and Reference



ASML The procedure is written in Assembler and is called using standard
System/390 linking conventions. It returns length of the output
record in a parameter.

C The procedure is written in C and is called using persistent C
environment. It returns length of the output record in a field
within the record.

See Appendix A, “Log and record procedures,” on page A-1 for details.

PARM expression
Specifies an expression that the log collectorlog collector evaluates and
passes to the procedure the first time it is called. The procedure must
understand the format and interpret the value derived from the expression.

The expression cannot contain identifiers. The result of expression must be an
integer, a floating-point number, or a character string.

Examples
Identify an assembly language program, DRL2CICS, that processes record types
SMF_110_1 and SMF_110_V2. The program requires a variable name
CICS_OPTION. Write this DEFINE RECORDPROC statement to identify the record
procedure:

For more information about using the DEFINE RECORDPROC statement, see
“Specifying log and record procedures” on page A-2.

DEFINE UPDATE
Use the DEFINE UPDATE statement to specify how to process data from a given
record type or a given data table (the source of the update), and how to store it the
result in another data table (the target of the update).

Syntax

►► DEFINE UPDATE update-name
VERSION string-constant

►

► FROM source-name
SECTION section-name WHERE condition

►

► TO table-name
apply-schedule-clause distribute-clause

►

►
let-clause group-by-clause set-clause

merge-clause

►◄

DEFINE RECORDPROC DRL2CICS
VERSION ’IBM.120’
FOR SMF_110_1, SMF_110_V2
LANGUAGE ASM
PARM &CICS_OPTION;

Figure 11-10. DEFINE RECORDPROC statement

DEFINE RECORDPROC

Chapter 11. Log collector language statements 11-29



Parameters
update-name

The name of the update being defined. It can be any identifier. All updates
defined to the log collector must have distinct names.

VERSION string-constant
The string specified by the string-constant is stored together with the
definition, to identify the statement that was used to create the definition.
The string can be at most 18 bytes long. Omitted VERSION means the
same as specifying VERSION ’.

If the stored definition is later altered by means of an ALTER UPDATE
statement, its version identification is changed to 'ALTERED'. Version
names are used by the Tivoli Decision Support for z/OS installation
program to decide which definitions should be replaced. All definitions
supplied by IBM have version names starting with 'IBM'. To ensure correct
installation of new releases, do not use such names for your own
definitions. For an example of how VERSION is used by IBM, see
Figure 11-11 on page 11-31. For information about using VERSION, refer to
the Administration Guide and Reference .

FROM source-name
Identifies the source for the update definition. Must be a record type name
or a table name.

SECTION section-name
Specifies that the source of the update is a repeated section
section-name of the record source-name. As explained in “Using
repeated sections within records” on page 5-2, the log collectorlog
collector then generates an internal record for each occurrence of
the repeated section. The source of the update is that internal
record.

If the record source-name has repeated sections, and you omit the
SECTION clause, the update can only use the data that is outside
the repeated sections.

WHERE condition
Limits the update to only those source records or rows for which the
condition is true. Any identifier used in the condition must be the name of a
field in the source record or of a column in the source table.

TO table-name
Names the table to be updated.

apply-schedule-clause ;distribute-clause ;let-clause ;group-by-clause ;set-clause
;merge-clause

These clauses specify the processing to be done. You can think of them as
instructions, executed in the order they appear in the statement. They are
described in detail in separate sections.

You will normally use only two or three of these clauses in one update
definition. For the update definition to make sense, you must specify at
least one of these: GROUP BY clause, SET clause, or MERGE clause. The
first clause that you specify uses as its input the source records or rows
from the table source-name. Each of the subsequent clauses uses the result
of the preceding clause as its input. The result of the APPLY SCHEDULE
and DISTRIBUTE clauses is a temporary internal table. The LET clause
only defines more names, and passes the internal table (if any) to the next
clause. The result of GROUP BY clause are groups of records or rows. The

DEFINE UPDATE

11-30 Tivoli Decision Support for z/OS: Language Guide and Reference



result of SET and MERGE clauses are updates to the target table. Any
identifier used in an expression in any of the clauses must be the name of
a field (or column) in the source record (or table), or a name introduced in
one of the preceding clauses. Notice that the APPLY SCHEDULE clause
introduces one name (that of status column), the DISTRIBUTE introduces
two names (these of timestamp and interval column), and the LET clause
can introduce any number of names.

Examples
Figure 11-11 shows a DEFINE UPDATE statement that tells the log collector how to
enter data from VM accounting records (record type VMACCT_01) into table
VM_ACCOUNTING_D.

APPLY SCHEDULE clause
This clause applies a specified schedule to the source. The source may be a record
type or a table. For the purpose of this description, it is assumed to be a table.

The source must contain availability data. That means each row must represent an
interval described by three items: interval type, interval start, and interval end. The
row can also contain other data.

The schedule is obtained from the table DRLSYS.SCHEDULE.

The result of the APPLY SCHEDULE clause is a temporary internal table. It is a
copy of the source table, with these modifications:
v The intervals are split on boundaries between schedule periods. The rows

resulting from the split contain the same data as the original row, except the
interval type, interval start, and interval end, which are modified.

v A status column is added. The column contains equal sign (=) if the interval is
within the schedule, or the letter X if the interval is outside the schedule.

See “Comparing actual availability to scheduled availability” on page 5-24 for
more information about using the APPLY SCHEDULE clause.

The syntax of the APPLY SCHEDULE clause is:

DEFINE UPDATE MKTVACC_01D
VERSION ’IBM.120’
FROM VMACCT_01
TO VM_ACCOUNTING_D
GROUP BY
(DATE = ACODATE,
USER_ID = ACOUSER,
ACCOUNT_NUMBER = ACONUM)

SET
(CONNECT_TIME = SUM(ACOCONT),
PROCESSOR_TIME = SUM(ACOTIME/1000),
VIRTPROC_TIME = SUM(ACOVTIM/1000),
PAGE_READS = SUM(ACOPGRD),
PAGE_WRITES = SUM(ACOPGWT),
IO_COUNT = SUM(ACOIOCT),
PUNCH_CARDS = SUM(ACOPNCH),
PRINT_LINES = SUM(ACOLINS),
READER_CARDS = SUM(ACOCRDS),
VECTOR_TIME = SUM(ACOVECTM/1000),
VECTOR_OVERHEAD = SUM(ACOVECTT/1000));

Figure 11-11. DEFINE UPDATE statement

DEFINE UPDATE

Chapter 11. Log collector language statements 11-31



►► APPLY SCHEDULE expression TO column-name-1, column-name-2, column-name-3 ►

► STATUS identifier ►◄

expression
Specifies the name of the schedule to use. The expression must specify a
character string.

column-name-1
Names the source column that contains interval type code. It must be a
character column of length 3.

column-name-2
Names the source column that contains the interval start. It must be a
timestamp column.

column-name-3
Names the source column that contains the interval end. It must be a
timestamp column.

STATUS identifier
Specifies the name for the status column in the resulting internal table.

DISTRIBUTE clause
This clause distributes input values over specified time periods. The input to this
clause is the source record type, or source table, or the internal table that is the
result of the preceding APPLY SCHEDULE clause. For the purpose of this
description, it is assumed to be a table.

Each input row must contain data related to a time interval.

The result of the DISTRIBUTE clause is a temporary internal table. It is a copy of
the source, with these modifications:
v The intervals are split on boundaries between the time periods. The rows

resulting from the split contain the same data as the original row, except for the
columns specified to be distributed. The data in these columns is distributed in
proportion to the length of the interval.

v A timestamp and interval columns are added. The timestamp column contains the
start of the interval represented by the row. The interval column contains the
length of the interval in seconds.

See “Distributing measurements” on page 5-16 for more information about using
the DISTRIBUTE clause.

The syntax of the DISTRIBUTE clause is:

►► DISTRIBUTE ▼

,

field-name
column-name

BY expression START expression ►

► END expression TIMESTAMP identifier INTERVAL identifier ►◄

field-name ;column-name
Names a field or column to be distributed. The field or column must

DEFINE UPDATE

11-32 Tivoli Decision Support for z/OS: Language Guide and Reference



contain a numeric value. The corresponding column in the resulting
internal table contains floating-point numbers.

BY expression
Specifies the length of the distribution period in seconds. The periods start
at midnight and are all of the same length, except possibly the last one
before next midnight. The expression must specify an integer.

START expression
Identifies the start time of the interval represented by the input row. The
expression must specify a timestamp.

END expression
Identifies the end time of the interval represented by the input row. The
expression must specify a timestamp.

TIMESTAMP identifier
Specifies the name of the timestamp column in the resulting internal table.

INTERVAL identifier
Specifies the name of the interval column in the resulting internal table.

LET clause
Using this clause, you can give names to expressions that are frequently used in
the next clauses. This saves you writing, but also speeds up the processing. For
example, if you use data from a record field, the log collector reads and converts
the contents of the field every time you specify the name of that field. If you give a
name to the value from the field, and then use that name, the conversion will be
done only once.

The syntax of the LET clause is:

►► ▼

,

LET ( identifier = expression ) ►◄

expression
The log collector evaluates this expression and assigns the specified name
to the result. The expression can use the names defined earlier in the same
LET clause.

identifier
Specifies the name assigned to the result of the expression.

The name can be any identifier distinct from the names of fields (or
columns) in the source, the name of the status column specified by APPLY
SCHEDULE (if APPLY SCHEDULE was used), the names of timestamp
and interval columns specified by DISTRIBUTE (if DISTRIBUTE was used),
and the names defined earlier in the same LET clause.

GROUP BY clause
This clause groups records or rows by specified grouping values. The input to this
clause is the source record type, or source table, or the internal table that is the
result of the preceding APPLY SCHEDULE or DISTRIBUTE clause. For the purpose
of this description, it is assumed to be a table.

DEFINE UPDATE

Chapter 11. Log collector language statements 11-33



The result of GROUP BY are groups of the input rows, such that all rows within
each group have the same grouping values. All grouping values must be non-null.
A row that has null as any of its grouping values is not included in any group.

If you omit the GROUP BY clause, all input rows are treated as one group.

See “Understanding the GROUP BY clause” on page 2-4 for more information
about using the GROUP BY clause.

The syntax of the GROUP BY clause follows.

►► ▼

,

GROUP BY ( column-name = expression ) ►◄

expression
Specifies one grouping value.

column-name
Names the column where to store the grouping value. It must be the name
of a column in the target table. The column cannot be a decimal or long
string column.

SET clause
This clause summarizes groups of records or rows resulting from GROUP BY. For
the purpose of this description, the groups are assumed to consist of rows.

The SET clause represents each group by one row in the target table. In that row,
the grouping values are stored in the columns specified in the GROUP BY clause.
The values of other columns are derived from all rows in the group, as specified in
the SET clause. The columns not named in the GROUP BY and SET clauses are set
to null.

See “Understanding the SET clause” on page 2-5 for more information about using
the SET clause.

The syntax of the SET clause is:

►► ▼

,

SET ( column-name = accumulation ) ►◄

accumulation:

SUM (expression)
MIN (expression)
MAX (expression)
COUNT (expression)
FIRST (expression)
LAST (expression)
AVG (expression, column-name)
PERCENTILE (expression, column-name, integer-constant)

DEFINE UPDATE

11-34 Tivoli Decision Support for z/OS: Language Guide and Reference



column-name
Names a column of the target table. The accumulation specifies how to
derive the value to be stored in that column.

SUM(expression)
Evaluates the expression for each row in the group. The value of SUM is the
sum of all non-null values thus obtained. If the value of expression is null
for all records (or rows) in the group, the value of SUM is null.

The expression must specify a numeric value. If that value is not of the
same type as the column column-name, it is converted to the type of the
column, and the sum is computed for the converted values.

MAX(expression)
Evaluates the expression for each row in the group. The value of MAX is
the greatest of all non-null values thus obtained. If the value of expression is
null for all records (or rows) in the group, the value of MAX is null.

MIN(expression)
Evaluates the expression for each row in the group. The value of MIN is the
least of all non-null values thus obtained. If the value of expression is null
for all rows in the group, the value of MIN is null.

COUNT(expression)
Evaluates the expression for each row in the group. The value of COUNT is
the number of non-null values thus obtained.

The result is an integer.

FIRST(expression)
Evaluates the expression for each row in the group, in the order they are
processed. The result is the first non-null value of expression. If the value of
expression is null for all records (or rows) in the group, the value of FIRST
is null.

LAST(expression)
Evaluates the expression for each row in the group, in the order they are
processed. The result is the last non-null value of expression. If the value of
expression is null for all records (or rows) in the group, the value of LAST
is null.

AVG(expression,column-name)
Evaluates the expression for each row in the group. The result is the average
or weighted average of the values thus obtained, depending on
column-name.

The column-name must name a column whose value is specified in the
same SET clause. The value of column-name must be specified using either
COUNT or SUM. If column-name is specified by means of COUNT, its
value must be equal to the number of non-null values of expression. The
result of AVG is then the average of all non-null values of expression in the
group. If the value of expression is null for all records in the group, the
value of AVG is null. If column-name is specified by means of SUM, the
result of AVG is the weighted average of all non-null values of expression in
the group. The argument of SUM obtained for the same row is used as the
weight. If the value of expression is null for all records in the group, or the
sum of all weights is 0, the value of AVG is null. The expression must
specify a numeric value. The result of AVG must be stored in a
floating-point column.

DEFINE UPDATE

Chapter 11. Log collector language statements 11-35



PERCENTILE(expression,column-name,integer-constant)
Evaluates the expression for each row in the group. The value of
PERCENTILE is a value p such that integer-constant percent of all non-null
values resulting from evaluating the expressions is lower than p, and
100-integer-constant percent is higher than p. The integer-constant value must
be in the range 1-99.

The column-name must name a column whose value is specified in the
same SET clause. Its value must be specified using COUNT, and must be
equal to the number of non-null values of expression. The expression must
specify a numeric value. The result of PERCENTILE must be stored in a
floating-point column.

PERCENTILE can be used only if the source of the update is a record. If
the value of a column is specified by means of PERCENTILE, it can be
specified in only one update definition.

MERGE clause
This clause merges availability intervals. The input to this clause are groups of
records or rows resulting from GROUP BY. For the purpose of this description, the
groups are assumed to consist of rows.

The parameters of the MERGE clause specify how to derive from each row a piece
of evidence about availability of some resource. It is described by four parameters:
start and end times of a time interval, the interval type that identifies the status of
the resource during the interval, and the quiet interval.

The MERGE clause combines this evidence and produces a set of rows in the
target table that describes the status of the resource at different times. Each of these
rows represents an interval described by means of start and end times, interval
type, and quiet interval. Besides this information, each row contains the grouping
values, in the columns specified by the GROUP BY clause.

See “Understanding the MERGE clause” on page 5-23 for more information about
using the MERGE clause.

The syntax of the MERGE clause is:

►► MERGE ( column-name-1 = expression-1 , column-name-2 = expression-2 , ►

► column-name-3 = expression-3 , column-name-4 = expression-4 ) ►◄

expression-1
Specifies the interval type. It must be one of these character strings: |==,
===, ==|, |=|, |XX, XXX, XX|, or |X|. For information about their
meaning, see Table 5-19 on page 5-21.

expression-2
Specifies the start time of the interval. It must be a timestamp.

expression-3
Specifies the end time of the interval. It must be a timestamp greater than
or equal to the timestamp specified by expression2.

expression-4
Specifies the quiet interval in seconds. It must be a non-negative integer.

DEFINE UPDATE

11-36 Tivoli Decision Support for z/OS: Language Guide and Reference



column-name-1
Names the column of the target table where to store the interval type. It
must be a character column of length 3.

column-name-2
Names the column of the target table where to store the start time. It must
be a timestamp column.

column-name-3
Names the column of the target table where to store the end time. It must
be a timestamp column.

column-name-4
Names the column of the target table where to store the quiet interval. It
must be an integer or small-integer column.

How data is obtained from DB2 tables
These rules apply when the log collector obtains data from a DB2 table:
v The result of a reference to an integer or small integer column is an integer.
v The result of a reference to a floating-point column is a floating-point number.

Numbers from single-precision columns are extended with binary zeros on the
right.

v The result of a reference to a decimal column is a floating-point number. If the
number from the table cannot be represented exactly as a floating-point number,
it is rounded to the nearest floating-point value.

v The result of a reference to a character column is a character string. If the string
from the table is longer than 254 bytes, it is truncated to 254 bytes. The
truncation does not take into account any double-byte characters that might be
present in the string.

v The result of a reference to a graphic column is a character string. This character
string is obtained by adding shift-out and shift-in characters at the end of the
graphic string from the table. If the string from the table is longer than 252
bytes, it is truncated to 252 bytes before adding the shift characters.

v The result of a reference to a date/time column is a date/time value of the same
type. The time values from the table are extended with the microseconds part of
0.

How data is stored in DB2 tables
These rules apply when the log collector stores data in SQL tables:
v Numbers can be stored in numeric columns. Character strings can be stored in

character columns or graphic columns. Date/time strings can be stored in
date/time columns of the corresponding type. Date/time values can be stored in
date/time columns of the same type and in character columns.

v When a floating-point number is stored in an integer or small integer column,
only the integer part of the number is stored. The fractional part is discarded.

v When a floating-point number is stored in a single-precision floating-point
column, it is rounded to the nearest single-precision value.

v When a floating-point number is stored in a decimal column, it is rounded to
the nearest value with the required scale.

v When a character string is stored in a character column, it is truncated or
padded with blanks if needed.

DEFINE UPDATE

Chapter 11. Log collector language statements 11-37



v When a character string is stored in a graphic column, it must have shift-out and
shift-in characters at its ends. These characters are removed. If needed, the result
is truncated or padded with blanks.

v When a date/time string is stored in a date/time column, it is converted to the
date/time value represented by the string.

v When a date/time value is stored in a character string column, it is converted to
a date/time string representing that value, and padded with blanks at the end if
needed. Truncation is not allowed. The column must be wide enough to hold the
whole string.

v When a time value is stored in a time column, the microseconds part is
discarded.

DROP
Use the DROP statement to delete a stored definition. You can drop:
v A log definition
v A record definition
v A record procedure definition
v An update definition
v A purge condition for a table

Syntax

►► DROP LOG log-name
RECORD record-name
RECORDPROC procedure-name
UPDATE update-name
PURGE FROM table-name

►◄

Parameters
LOG log-name

Specifies to drop the log definition log-name.

RECORD record-name
Specifies to drop the record definition record-name.

RECORDPROC procedure-name
Specifies to drop the record procedure definition procedure-name.

UPDATE update-name
Specifies to drop the update definition update-name.

PURGE FROM table-name
Specifies to drop the purge condition for the table table-name.

Examples
Assume that you want to delete the log definition named SOME_LOG, the record
type SOME_REC, and the purge condition for the data table SOME.DATA_.TABLE.
Use these drop statements to remove the log, record, and purge condition
definitions:

DEFINE UPDATE

11-38 Tivoli Decision Support for z/OS: Language Guide and Reference



For more information about using the DROP statement, see “Using the DROP
statement to delete a record definition” on page 3-8 and “Using the DROP
statement to delete an update definition” on page 5-27.

GENERATE INDEX
Use the GENERATE INDEX statement to create a new index on a data table. This
statement is converted to an SQL 'CREATE INDEX' statement. GENERATE INDEX
allows index customization without the need to change the definition members.
The created index will be a Unique, Primary index. If you are using a table space
type of RANGE for your component installation the index will be a
data-partitioned secondary index.

Syntax

►► GENERATE INDEX index-name ON table-name PROFILE string-constant ►◄

Parameters
INDEX index-name

Names the index to create.

ON table-name
Names the table to create the index on.

PROFILE string-constant
Specifies the name of a profile in the GENERATE_PROFILES system table. The
information in this profile is used when building the SQL statement that
creates the index.

Example
The following example shows a GENERATE INDEX statement.

GENERATE PARTITIONING
Use the GENERATE PARTITIONING statement to specify range partitioning for a
table. This statement is converted to an SQL 'ALTER TABLE ADD PARTITION BY
RANGE' statement. GENERATE PARTITIONING allows partitioning customization
without the need to change the definition members.

GENERATE PARTITIONING only creates a partitioning scheme if the table space
used by the table is set up with a partitioning type of RANGE in the

DROP LOG SOME_LOG;

DROP RECORD SOME_REC;

DROP PURGE FROM SOME.DATA_.TABLE;

Figure 11-12. DROP statement

GENERATE INDEX &PREFIX.SOME_TABLE_IX
ON &PREFIX.SOME_TABLE PROFILE ’SMF’;

DROP

Chapter 11. Log collector language statements 11-39



GENERATE_PROFILES system table. In all other cases the statement is ignored
and does not generate any SQL statements.

The GENERATE PARTITIONING statement does not create a partitioning scheme
on an already existing table: it will only create partitioning if its executed at the
same time that the table is created.

Syntax

►► GENERATE PARTITIONING ON table-name PROFILE string-constant ►◄

Parameters
ON table-name

Names the table to create the partitioning on.

PROFILE string-constant
Specifies the name of a profile in the GENERATE_KEYS system table. The
information in this profile is used when building the SQL statement that
creates the index.

Example
The following example shows a GENERATE PARTITIONING statement.

GENERATE TABLESPACE
Use the GENERATE TABLESPACE statement to create a table space. The statement
is converted to an SQL 'CREATE TABLESPACE' statement. This statement allows a
table space to be created as either partitioned or non-partitioned without changing
the definition members.

The type of table space created will depend on the value of the field
TABLESPACE_TYPE in the GENERATE_PROFILES for the profile specified on the
GENERATE statement.

Table 11-2. Table space type

TABLESPACE_TYPE value Type of Table

RANGE Range Partitioned universal tablespace with
NUMPARTS determined by the number of entries in the
GENERATE_KEYS system table.

GROWTH Partition-by-growth tablespace with
MAXPARTS as specified in the GENERATE_PROFILES
system table.

SEGMENTED Segmented tablespace. If SEGSIZE is not
specified in the GENERATE_PROFILES system table, it
defaults to SEGSIZE = 4

Anything else Partition-by-growth tablespace

Syntax

►► GENERATE TABLESPACE identifier PROFILE string-constant ►◄

GENERATE PARTITIONING ON &PREFIX.DB2_SYS_PARAMETER
PROFILE ’SMF’

DROP

11-40 Tivoli Decision Support for z/OS: Language Guide and Reference



Parameters
TABLESPACE identifier

Names the table space to create. This identifier cannot exceed 8 bytes. It must
consist of uppercase letters, digits, and underscore characters. It must start
with a letter and must be distinct from all SQL reserved words.

PROFILE string-constant
Specifies the name of a profile in the GENERATE_PROFILES system table. The
information in this profile is used when building the SQL statement that
creates the index.

Example
The following is an example of the GENERATE TABLESPACE statement.

LIST RECORD
Use the LIST RECORD statement to produce reports directly from a log data set
without going through the collect process. This statement is useful when you want
to produce detailed reports that cover only a short time period.

The log collector presents the output in one of these formats:
1. As a readable file. This format is useful when the log collector produces the

report in batch or when no specific report formatting is required.
2. As an IXF file. QMF can display and format this file. QMF can also load this

file into a DB2 table.

You can use LIST RECORD statement to list several record types from the same
log. Each record type is then listed in a separate output file.

LIST RECORD works the same way as update definitions during collect. LIST
RECORD has the same summarization and grouping concepts, and handles
repeated sections in the same way as collect.

If LIST RECORD needs to summarize or group the data, the log collector performs
data buffering (similar to collect). Otherwise the writes the result immediately to
the output file(s). If the buffer fills up, the log collector writes the data
accumulated so far, and terminates LIST RECORD with a warning message.

LIST RECORD labels the columns in the listing with the field name if the
expression is a single field, or with the first part of the expression if the expression
consists of more than one field.

Syntax

►► LIST ▼

,

list-specification
LOGFILE file-name

►

GENERATE TABLESPACE DRLSTBSP PROFILE ’SMF’;

DROP

Chapter 11. Log collector language statements 11-41



►
BUFFER SIZE integer-constant BREAK

ON OVERFLOW CONTINUE

►◄

list-specification:

RECORD record-name
SECTION section-name

►

► ▼

,

FIELDS column-specification
WHERE condition

►

►

▼

,

GROUP BY expression

►

►

▼

.
ASC

ORDER BY integer-constant
field-name DESC

LISTFILE file-name
►

►
LIST

FORMAT IXF

column-specification:

expression
accumulation

accumulation:

SUM (expression)
MIN (expression)
MAX (expression)
COUNT (expression)
FIRST (expression)
LAST (expression)
AVG (expression)
PERCENTILE (expression, integer-constant)

LIST RECORD

11-42 Tivoli Decision Support for z/OS: Language Guide and Reference



Parameters
list-specification

Specifies how to list one record type. You can think of the different clauses
of list-specification as being interpreted in the order in which they are
described below.

RECORD record-name
Names the record type to be listed. If several records are to be
listed (more than one list specification is coded), all record-names
coded in the RECORD clauses must belong to the same log. This
optional clause is available:

SECTION section-name
Specifies listing of a repeated section section-name of record
record-name. As in the case of update processing, (explained
in “Using repeated sections within records” on page 5-2),
the log collectorlog collector generates an internal record
for each occurrence of the repeated section. LIST RECORD
lists data from that internal record.

If the record record-name has repeated sections and you
omit the SECTION clause, you can only list data that is
outside the repeated sections.

Any identifiers used in the expressions and condition within this list
specification must be names of fields in the record being listed.

WHERE condition
Limits the log collectorlog collector to list only those records for
which the condition is true.

GROUP BY expression, ...
Specifies grouping of records. LIST RECORD produces one row for
each unique combination of values of expressions.

If you omit the GROUP BY clause, all list specifications in the
FIELDS clause must be of the same kind: either all expressions or
all accumulations. The result depends on which is the case:
v If all list specifications are expressions, LIST RECORD does not

perform any grouping and produces one row for each record.
v If all list specifications are accumulations, LIST RECORD

produces one row that summarizes all records.

FIELDS column-specification, ...
Defines one row of the output list. Each column-specification defines
the value to be listed in one column. As the syntax diagram shows,
each column-specification is either an expression or an accumulation.

If you specify GROUP BY, all expressions listed in GROUP BY
must appear as column specifications in the FIELDS clause. All the
remaining column specifications (if any) must be accumulations.

If you do not specify GROUP BY, all column specifications must be
of the same kind, either all expressions or all accumulations.

expression
Specifies a value to be listed. If records are not grouped, it
is obtained from the record listed in the row. If records are
grouped, it is a value common to all records in the group.

LIST RECORD

Chapter 11. Log collector language statements 11-43



accumulation
Specifies a value obtained from all records in the group.
You can use it only if records are grouped. The value is
obtained in a similar way as in the SET clause of the
DEFINE UPDATE statement (see “SET” on page 11-53).
Note that AVG and PERCENTILE have a syntax that
differs from the SET clause:

AVG(expression)
Calculates the value of expression for each input
row that is grouped together to form an output
row. LIST RECORD adds these values and divides
by the number of input rows to the group.

PERCENTILE(expression,integer-constant)
Calculates the value of expression for each input
row to a group, places the values in a buffer and
sorts them. Before LIST RECORD writes the
grouped output row, it determines the output
value (percentile) where integer-constant percent of
the values in the group are smaller than the output
value, and 100-integer-constant percent of the values
are larger.

ORDER BY
Orders the output produced by LIST RECORD. If you omit ORDER BY, the
order remains the same as the records in the input log data set.

The output is ordered by the values of the columns you identify. You can
identify columns by their numbers. If the value of a column is specified by
means of an expression (not an accumulation), and this expression is a
single field name, you can use that field name to identify the column.

If you identify more than one column, the output is ordered by the values
of the first column you identify, then by the values of the second column,
and so on.

integer-constant
Identifies a column to be used for ordering. It is the number of the
column, counting from the left.

field-name
Identifies a column to be used for ordering. The field-name must
appear as one of column specifications in the FIELDS clause.

ASC Orders the data in ascending sequence. This is the default.

DESC Orders the data in descending sequence.

LISTFILE file-name
Names the output file where the log collectorlog collector writes the data.
The default is DRLLST1 for the first list-specification, DRLLST2 for the
second, and so on. The same file-name may not be used in different list
specifications.

FORMAT
Specifies the format of the list file:
LIST Write the output in a readable list format. This is the default.
IXF Write the output in the IXF format.

LOGFILE file-name
Names the input log ddname. The default is DRLLOG.

LIST RECORD

11-44 Tivoli Decision Support for z/OS: Language Guide and Reference



BUFFER SIZE integer-constant
Specifies the size (in bytes) of the internal buffer used if the LIST RECORD
statement includes a GROUP BY clause or an ORDER BY clause. The
default is 10 000 000 bytes. The minimum allowed value is 10 000 bytes.

ON OVERFLOW
Specifies the action to be taken when an overflow occurs during LIST
RECORD processing when buffering is in use. The overflow is a situation
when an accumulated value exceeds the range allowed for this type of
values. The possible options follow.

BREAK
Stop the processing. The log collectorlog collector does not produce
any LIST RECORD output.

CONTINUE
Reset the accumulated value to 0, write the lost value to the
DRLDUMP file, and continue the processing.

Examples
List the jobs that ran between 2 and 2:30 p.m.

Figure 11-14 shows messages that the log collectorlog collector might write to the
DRLOUT DD statement as a result of the LIST RECORD statement in Figure 11-13.

Figure 11-15 on page 11-46 illustrates the LIST RECORD statement output in the
DRLLST1 file.

LIST
RECORD SMF_030
FIELDS SMF30TME, -- Time

SMF30JBN, -- Job name
SMF30CLS, -- Class
INTEGER(INTERVAL(SMF30SIT,SMF30TME)), -- Elapsed time (seconds)
(SMF30CPT+SMF30CPS) / 100.0 -- CPU time (seconds)

WHERE SUBSTR(SMF30JNM,1,3) = ’JOB’
AND HOUR(SMF30TME) >= 14
AND HOUR(SMF30TME) <= 15;

Figure 11-13. LIST RECORD statement

DRL0300I List started at 2000-06-23-14.30.12
DRL0302I Processing SMF.DATA.SET on VOL001
DRL0341I The first-record timestamp is 2000-06-22-04.02.27.
DRL0380I 102347 records read from the input log
DRL0342I The last-record timestamp is 2000-06-22-22.35.18.
DRL0315I Records read from the log or built by log procedure:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I SMF_030 | 2489
DRL0318I -------------------|----------
DRL0321I Total | 2489
DRL0381I 42 records written to DRLLST1 file
DRL0301I List ended at 2000-06-23-14.32.15

Figure 11-14. Messages from the LIST RECORD statement

LIST RECORD

Chapter 11. Log collector language statements 11-45



LOGSTAT
Use the LOGSTAT statement to print the number of records of different types
found in a log data set, and the number of records built by record procedures.

Syntax

►► LOGSTAT log-name
FILE file-name

►◄

Parameters
log-name

Is the name of a stored log definition. It identifies the type of log to be
processed.

FILE file-name
Names the input DD statement that refers to the log data set. The default
file-name is DRLLOG.

Example
Assume that you want to print the different record types in an IMS log data set
referred to in the JCL DD statement IMSLOG1.

Figure 11-17 on page 11-47 shows the messages produced by the log collectorlog
collector.

SMF30TME SMF30JBN SMF30CLS INTEGER(INTERVAL(SMF3 (SMF30CPT+SMF30CPS) /
-------- -------- -------- --------------------- ---------------------
14.00.51 TEST4 A 48 6.20000000000000E+00
14.02.14 XYZ123 A 518 3.90000000000000E+02
14.02.19 ABBJ C 111 2.20000000000000E+01
:

Figure 11-15. Results from the LIST RECORD statement

LOGSTAT IMS FILE IMSLOG1;

Figure 11-16. LOGSTAT statement

LOGSTAT

11-46 Tivoli Decision Support for z/OS: Language Guide and Reference



PURGE
Use the PURGE statement to delete data from data tables based on the stored
purge conditions (see “DEFINE PURGE” on page 11-18). Only the tables with
specified purge conditions are purged.

Syntax

►► PURGE

▼

,

INCLUDE table-name
LIKE string-constant

►

►

▼

,

EXCLUDE table-name
LIKE string-constant

►◄

Parameters
INCLUDE

Specifies the tables for which the purge applies. If you specify INCLUDE,
the log collectorlog collector purges only the specified tables.

table-name
Is the name of a table to be included.

DRL0300I Logstat started at 2000-06-23-14.29.41.
DRL0302I Processing IMS.DATA.SET on VOL001
DRL0341I First record timestamp is 2000-06-22-04.02.27
DRL0342I Last record timestamp is 2000-06-22-22.35.18
DRL0003I
DRL0315I Records read from the log or built by log procedure:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I IMS_000 | 0
DRL0319I IMS_006 | 191
DRL0319I IMS_007 | 0
DRL0319I IMS_030 | 2489
DRL0319I IMS_039 | 0
DRL0319I IMS_070 | 51
DRL0319I IMS_071 | 51
DRL0319I IMS_072_1 | 918
DRL0320I Unrecognized | 5518
DRL0318I -------------------|----------
DRL0321I Total | 9218
DRL0003I
DRL0316I Records built by record procedures:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I IMS_X | 36
DRL0318I -------------------|----------
DRL0321I Total | 36
DRL0301I Logstat ended at 2000-06-23-14.30.12

Figure 11-17. Messages from the LOGSTAT statement

PURGE

Chapter 11. Log collector language statements 11-47



LIKE string-constant
Specifies a group of tables to be included. The tables are those with
names matching the pattern specified as the string-constant. The
pattern matching rules are defined in “Pattern matching” on page
9-11. If the pattern contains a period (.), the table prefix must
match the part before the period, and the rest of the table name
must match the part after the period. For example, the pattern
DRL.CICS% includes all tables whose names start with CICS and
have DRL as prefix.

If the pattern does not contain a period, the prefix must be the
current user ID, and the rest of the name must match the whole
pattern.

EXCLUDE
Specifies the tables to be excluded from the purge. If you specify
EXCLUDE, the log collectorlog collector purges all tables with defined
purge condition except the specified tables.

table-name
Is the name of a table to be excluded.

LIKE string-constant
Specifies a group of tables to be excluded, using the same rules as
for INCLUDE.

Example
Assume that you want to apply the purge definition to all tables that have a prefix
of DRL and begin with CICS except DRL.CICS_APPL1. Use this PURGE statement
to include all CICS tables except DRL.CICS.APPL1:

For more information about using the PURGE statement, see “Deleting data” on
page 4-7.

Usage
You can specify both INCLUDE and EXCLUDE on a PURGE statement. For
example, INCLUDE LIKE 'DRL.CICS%' EXCLUDE DRL.CICS_APPL_H includes all
CICS tables except DRL.CICS_APPL_H.

RECALCULATE
Use the RECALCULATE statement to update one or more data tables with
information derived from another table.

The table used as the source of data in the RECALCULATE statement is called the
base table. The tables being updated with information derived from the base table
are called the dependent tables. Each dependent table must have an update
definition either from the base table or from another dependent table. This update
definition is used to calculate the new contents of the dependent table.

You can choose between two alternative ways of updating the tables:

PURGE INCLUDE LIKE ’DRL.CICS%’
EXCLUDE DRL.CICS_APPL1;

Figure 11-18. PURGE statement

PURGE

11-48 Tivoli Decision Support for z/OS: Language Guide and Reference



v Recalculation.
The log collector replaces data in the dependent tables by new values, calculated
from the current contents of the base table. The contents of the dependent tables
after RECALCULATE reflect the contents of the base table (with some exceptions
resulting from the rule that RECALCULATE never deletes rows from dependent
tables). You choose this alternative by specifying RECALCULATE FROM.

v Propagation of changes.
You specify a change to the base table. The log collector makes this change and
propagates it to the dependent tables. For example, you increase by 2 the value
in some column of the base table. If the dependent table contains a sum
computed from that column, that sum is also increased by 2. But, it need not be
equal to the sum of values currently present in the base table (which is the
normal situation if data were purged).
You choose this alternative by specifying RECALCULATE DELETE, INSERT, or
UPDATE.

Note: The RECALCULATE function has been implemented for small DB2 changes
or column adjustments. It is not technically and logically correct to utilize that
function in place of the COLLECT function of the log collector. For large updates
and inserts in DB2 tables you must use the COLLECT function of the log collector.
The RECALCULATE function does not allow for commits to be done until the job
completes and uses a pre-allocated buffer of 200 megabytes. If this buffer size
cannot handle your amount of data, an abend U0005 can occur. In this case you
should perform the RECALCULATE in different steps, using the WHERE condition
to change only a group of rows at a time.

Syntax

►► RECALCULATE

▼

,

table-name

from-clause
delete-clause
insert-clause
update-clause

►◄

from-clause:

FROM table-name
WHERE sql-condition

delete-clause:

DELETE FROM table-name
WHERE sql-condition

insert-clause:

INSERT INTO table-name

▼

,

( column-name )

►

RECALCULATE

Chapter 11. Log collector language statements 11-49



► ▼

,

VALUES ( constant )

update-clause:

▼

,

UPDATE table-name SET ( column-name = expression ) ►

►
WHERE sql-condition

Parameters
table-name, ...

Lists the dependent tables.

Omitted list means the same as listing all tables that have their contents
derived from the base table by means of update definitions, either direct or
cascaded.

FROM table-name
Identifies the table table-name as the base table. Indicates that you want to
recalculate the contents of the dependent tables from the contents of the
base table.

The log collector calculates first new rows for all dependent tables that
have update definitions from the base table. It uses these update
definitions to calculate the rows. If a new row has the same GROUP BY
values as a row already present in the table, the log collector replaces the
old row by the new. The data from the old row is lost. If the table does not
contain a row with the same GROUP BY values, the log collector inserts
the new row into the table.

The procedure is repeated with tables that have update definitions from
the tables thus recalculated, and so on. No rows are deleted in the process.
As a result, an updated table may contain old rows that no longer reflect
any data from the underlying table. These old rows are not used to
calculate new rows for the next table.

It is possible to calculate the new data using only selected rows from the
base table. You select the rows using this clause:

WHERE sql-condition
Specifies which rows to select. The selected rows are those for
which the sql-condition is true. If you omit WHERE, all rows are
selected. The sql-condition must be a valid SQL search condition for
the table table-name, and its individual tokens must be recognized
by the log collector.

DELETE FROM table-name
Identifies the table table-name as the base table. Indicates that you want to
delete rows from the base table and propagate the change to the dependent
tables.

RECALCULATE

11-50 Tivoli Decision Support for z/OS: Language Guide and Reference



The change to the dependent tables consists of changing data in the
existing rows. No rows are deleted from the dependent tables.

You specify the rows to be deleted using this clause:

WHERE sql-condition
Specifies the rows to be deleted from the base table. The log
collector deletes the rows for which the sql-condition is true. If you
do not specify a WHERE clause, all rows in the table are deleted.
The sql-condition must be a valid SQL search condition for the table
table-name, and its individual tokens must be recognized by the log
collector.

INSERT INTO table-name
Identifies the table table-name as the base table. Indicates that you want to
insert a row into the base table and propagate the change to the dependent
tables.

If the base table already contains a row with the same GROUP BY values
as the row being inserted, the log collector does not insert a new row. It
updates instead the existing row with the specified values. The log
collector uses for this purpose the accumulation functions specified in
update definitions for the table.

The change to the dependent tables can consist of inserting new rows or
changing data in the existing rows. No rows are deleted from the
dependent tables. Insertion of rows with duplicate GROUP BY values
follows the same rule as for the base table. You specify the row to be
inserted using these clauses:

(column-name, ... )
Lists the columns for which you specify values. Notice that you
must specify values for all GROUP BY columns.

Omitted list of columns means that you specify values for all
columns.

VALUES(constant, ... )
Specifies the values in the row. If the list of columns is present, the
constants specify values for the columns in the order they appear in
the list. The number of constants must be the same as the number
of column names.

If the list of columns is omitted, the constants specify values for the
columns in the order they appear in the table. The number of
constants must be the same as the number of columns in the table.

UPDATE table-name
Identifies the table table-name as the base table. Indicates that you want to
change one or more rows in the base table and propagate the change to the
dependent tables.

If one or more GROUP BY values in a row is changed, the resulting row
can have the same GROUP BY values as a row already present in the table.
The log collector merges then the two rows: it uses data from the changed
row to update the existing row and deletes the changed row. In this
process, the log collector uses the accumulation functions specified in
update definitions for the table.

The change to the dependent tables can consist of inserting new rows or
changing data in the existing rows. No rows are deleted from the

RECALCULATE

Chapter 11. Log collector language statements 11-51



dependent tables. Insertion of rows with duplicate GROUP BY values
follows the same rule as for INSERT INTO. You specify the change to the
base table using these clauses:

SET (column-name = expression, ... )
Specifies new values for the named columns.

WHERE sql-condition
Specifies the rows to be updated. The log collector updates only
the rows for which the sql-condition is true. If you do not specify a
WHERE clause, all rows in the table are updated. The sql-condition
must be a valid SQL search condition for the table table-name, and
its individual tokens must be recognized by the log collector.

Example
Assume that you want to change an account number. The account number is
stored in the column ACCOUNT_NO of the table ACCOUNT.INFO_TABLE.

Use this RECALCULATE statement to change the account number in the table:

Because you omitted the list of dependent tables, your change is propagated to all
tables that contain information based on ACCOUNT.INFO_TABLE.

For more information about using the RECALCULATE statement, see “Changing
data within tables” on page 4-8.

Usage
Be careful when you specify WHERE for a RECALCULATE FROM. Suppose you
have three tables:
v TABLE_H, containing hourly data
v TABLE_D, containing data from TABLE_H summarized by day
v TABLE_M, containing data from TABLE_D summarized by month.

Suppose you execute this statement:
RECALCULATE TABLE_D,TABLE_M FROM TABLE_H WHERE DATE=’2000-05-21’;

The data for the specified day in TABLE_D is recalculated correctly. But, the rows
for other days in TABLE_D are treated as old rows, that are left in the table
because of the rule that RECALCULATE does not delete rows. They are not used
to calculate the data for TABLE_M. As a result, the data for May 2000 in TABLE_M
is derived from data for only one day: May 21.

To avoid this problem, use a separate statement for each table:
RECALCULATE TABLE_D FROM TABLE_H WHERE DATE=’2000-05-21’;
RECALCULATE TABLE_M FROM TABLE_D WHERE MONTH=5;

RECALCULATE
UPDATE ACCOUNT.INFO_TABLE

SET (ACCOUNT_NO = ’880503’)
WHERE ACCOUNT_NO = ’880502’;

Figure 11-19. RECALCULATE statement

RECALCULATE

11-52 Tivoli Decision Support for z/OS: Language Guide and Reference



SET
Use the SET statement to define a named character string. Such a named string is
called a variable. The string itself is called the value of the variable.

You can also use the SET statement to change the value of an existing variable, that
is, to replace a named string by another with the same name.

The variable remains defined until the end of the log collector run.

Syntax

►► SET variable-name = string-constant ►◄

Parameters
variable-name

The name of the variable.

string-constant
The value of the variable.

Examples
Assume you want to create a variable named PREFIX with a value of STROMBK.
Use this SET statement to create the variable:

If the variable PREFIX already exists, the statement changes its value to
STROMBK.

Usage
You can use variables to modify your statements with the help of variable markers
(see “Using variables to modify your text” on page 8-7) and variable references (see
“Obtaining the value of a variable” on page 9-4). You can also use variables to
control certain diagnostic functions. (See , SH19-6902.)

SET PREFIX = ’STROMBK’;

Figure 11-20. SET statement

SET

Chapter 11. Log collector language statements 11-53



11-54 Tivoli Decision Support for z/OS: Language Guide and Reference



Part 3. Report definition language guide



Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 12. Introducing the report definition language

You can use the report definition language to write definitions for producing
reports from the data you collect using the log collector language.

Note: To use the report definition language, you need to have QMF installed on
your system.

The report definition language contains statements that let you:
v Create report definitions
v Create group definitions that are a logical collection of reports about a related

topic
v Delete report and group definitions

You can create report definitions using the report definition language, or you can
use the reporting dialog. The predefined reports that are supplied with Tivoli
Decision Support for z/OS are defined with the report definition language. Users
wanting to create new reports usually do this with the reporting dialog. For more
information about using the reporting dialog, refer to the Guide to ReportingGuide to
Reporting.

The syntax used to write report and group definition statements is similar to that
used to write log collector language statements. When you execute the report
definition program, it stores the report and group definitions that you create. Then
you can use the definitions to produce reports without having to write the
definition each time.

Chapter 13, “Implementing the report definition language,” on page 13-1 describes
how to use the report definition language to write a report definition. It explains
how to create tabular and graphical reports from data collected with the log
collector.

Chapter 14, “Report definition language elements,” on page 14-1 describes the
elements associated with the report definition language.

Chapter 15, “Report definition language statements,” on page 15-1 describes each
of the statements that you can use in the report definition language.

12-1



12-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 13. Implementing the report definition language

About this task

You use the report definition language to define reports and report groups. To do
this, you:
v Create a QMF query that determines how the data in the data table is accessed.

Export the query to a data set.
v Optionally, create a QMF form that specifies how the data is formatted, and

export the form to a data set.
v Write a report definition that identifies the query, form, and other options. You

might also write a group definition to identify a set of reports.
v Execute the report definition language program to store the report definition.

This chapter uses an example to describe how to create a simple QMF query and
QMF form. It also describes how to write a report definition and group definition,
and how to submit JCL to store the definitions and produce reports.

Getting started with the report definition language
About this task

Assume that you have collected data and stored it in a data table called
DRL.RWSTAT. Table 13-1 shows the contents of DRL.RWSTAT.

Table 13-1. Contents of DRL.RWSTAT data table

DATE HOUR R_ERR W_ERR TOT_ERR

2000-01-01 1 6 8 14

2000-01-01 2 7 4 11

2000-01-01 3 7 11 18

2000-01-01 4 6 11 17

2000-01-01 5 7 17 24

2000-01-01 6 8 6 14

You can use the report definition language to produce reports based on this data.
You can create a tabular report like the one shown in Figure 13-1 on page 13-2.

13-1



You can also produce a graphic report like the one shown in Figure 13-2.

Creating a QMF query and form
About this task

To create reports from a data table, you must create a QMF query to access the
data and, optionally, a QMF form to define the format of the report. If you do not
define a form, QMF will use a default form.

If you export the query and form to different data sets, you must allocate them
according to the QMF requirements for such objects.

You can access QMF to create queries and forms using the reporting dialog. For
more information about using the reporting dialog, refer to the Guide to Reporting.
For more information about using QMF to create queries and forms, refer to the
Query Management Facility Learner's Guide.

Number of READ/WRITE errors
for APPL1, APPL2, and APPL3

Date: 2000-01-01

TOT
HOUR ERR

------ -----------
1 14
2 11
3 18
4 17
5 24
6 14

Figure 13-1. Tabular report produced from DRL.RWSTAT

Number of READ/WRITE errors
for APPL1, APPL2, and APPL3

Date: 2000-01-01

0

5

10

15

20

25

1 2 3 4 5 6

TOT
ERR

Figure 13-2. Graphic report produced from DRL.RWSTAT

Getting started with the report definition language

13-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Writing a group definition
About this task

Before you create the actual report definition, you must first determine whether the
report will be part of a group. In this example, the report is going to be part of a
report group called ACCESS_ERRORS.

To create the group definition for the group called ACCESS_ERRORS, edit a new
member of DRL.LOCAL.DEFS called RSTATS and type the DEFINE GROUP
statement shown in Figure 13-3.

In Figure 13-3, you specify a name and a description for the group. When you
display this group through the reporting dialog, the description you use on the
DESC clause is displayed.

You assign a report to this group using the DEFINE REPORT statement.

Writing a report definition
About this task

Use the DEFINE REPORT statement to identify the query, form, and any options.
To create the reports shown in Figure 13-1 on page 13-2 and Figure 13-2 on page
13-2, you must create one report definition for a tabular report and one for a
graphic report.

Writing a definition for a tabular report
About this task

To create a definition for a tabular report, type the DEFINE REPORT statement
shown in Figure 13-4 in DRL.LOCAL.DEFS(STATTAB).

In Figure 13-4, you define the report name as TAB_RPT and specify the QMF query
and form you created earlier. The query and form are imported into QMF when
the statement is executed.

-- Define a report group called ACCESS_ERRORS
DEFINE GROUP ACCESS_ERRORS

DESC ’Access errors for APPL1, APPL2, and APPL3’;

Figure 13-3. Using the DEFINE GROUP statement

-- Define tabular report for READ/WRITE errors from APPL1, APPL2, APPL3
DEFINE REPORT TAB_RPT

DESC ’Table of RD/WR errors for APPL1, APPL2, APPL3’
QUERY RWQUERY
FORM RWFORM
FILE RWTABOUT
BATCH PRINT SAVE DAILY
GROUPS ACCESS_ERRORS;

Figure 13-4. Using the DEFINE REPORT statement for a tabular report

Writing a group definition

Chapter 13. Implementing the report definition language 13-3



The FILE and BATCH clauses define batch processing options for the report. When
the report is produced in batch it will be printed, and then saved in the member
RWTABOUT in the data set allocated to DRLREP.

Using the GROUPS clause, you assign this report to the report group called
ACCESS_ERRORS.

Writing a definition for a graphic report
About this task

You can use the DEFINE REPORT statement to specify that the report be produced
in chart format.

Type the DEFINE REPORT statement shown in Figure 13-5 in a member of
DRL.LOCAL.DEFS called STATGRA to define a bar chart for this data.

Creating the report definition for a chart is similar to creating the report definition
for a tabular report. You specify the name of the report definition, CHART_RPT,
and assign a description to the report definition. You specify the CHART clause to
identify the GDDM-ICU format used for this graphic report. (BAR is a predefined
QMF format; otherwise you would have to create a chart format.)

When the report is produced in batch it is printed and then saved in the member
RWCHAOUT in the data set allocated to ADMGDF.

Storing report definitions
About this task

After creating the group definition and the report definition, you can store these
definitions in batch using JCL.

Storing definitions in batch
About this task

Figure 13-6 on page 13-5 shows the JCL you can use to run jobs for storing group
and report definitions.

-- Define bar chart for READ/WRITE errors from APPL1, APPL2, and APPL3
DEFINE REPORT CHART_RPT

DESC ’Bar chart for RD/WR errors’
QUERY RWQUERY
FORM RWFORM
FILE RWCHAOUT
CHART BAR
BATCH PRINT SAVE DAILY
GROUPS ACCESS_ERRORS;

Figure 13-5. Using the DEFINE REPORT statement for a chart

Writing a report definition

13-4 Tivoli Decision Support for z/OS: Language Guide and Reference



You may need to modify these parameters submitted with DRLERDEF:

SYSTEM=DSN
The SYSTEM parameter specifies the name of the DB2 subsystem, which is
DSN in Figure 13-6.

SYSPREFIX=DRLSYS
The SYSPREFIX parameter specifies the prefix of the Tivoli Decision
Support for z/OS system tables, which is DRLSYS in Figure 13-6.

PREFIX=DRL
The PREFIX parameter specifies the prefix of all other tables, which is DRL
in Figure 13-6

SHOWSQL YES/NO
The SHOWSQL parameter specifies whether SQL statements should be
shown (for debugging).

QMF=YES/NO
The QMF parameter specifies whether QMF is used, which is YES in
Figure 13-6

For more information about the parameters used in the JCL, see Appendix B, “JCL
for the log collector language and report definition language,” on page B-1.

You can also store definitions from the reporting dialog. For more information
about using the reporting dialog, refer to the Guide to Reporting.

Generating reports
About this task

After report definitions are stored, you can use them to produce reports. You can
produce reports from the reporting dialog, or use JCL in batch. For more
information about producing reports, refer to the Guide to Reporting.

//jobname JOB parameters
//RDEF EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=DRL180.SDRLEXEC
//DRLIN DD DISP=SHR,DSN=DRL.LOCAL.DEFS(RSTATS)
// DD DISP=SHR,DSN=DRL.LOCAL.DEFS(STATTAB)
// DD DISP=SHR,DSN=DRL.LOCAL.DEFS(STATGRA)
//DRLOUT DD SYSOUT=*
//DRLDEFS1 DD DISP=SHR,DSN=DRL.LOCAL.DEFS
//...
//... QMF and DB2 libraries
//...
//SYSTSIN DD *
%DRLERDEF SYSTEM=DSN SYSPREFIX=DRLSYS PREFIX=DRL MODE=BATCH QMF=YES

Figure 13-6. JCL for storing report definitions in batch

Storing report definitions

Chapter 13. Implementing the report definition language 13-5



13-6 Tivoli Decision Support for z/OS: Language Guide and Reference



Part 4. Report definition language reference



Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 14. Report definition language elements

This chapter describes the elements that are common to Report definition language
elements. It describes how to code report definition language elements, and
discusses variables and constants.

Input format
When you enter report definition language elements, you can enter them in any
format you choose. You need not begin elements at a particular column within
your input data set. Instead, you can use any column between 1 and 72.

For example, this DEFINE REPORT statement:
DEFINE REPORT NEW_REPORT

DESC ’New report definition’
QUERY SQLQUERY
FORM QMFFORM
BATCH PRINT DAILY
GROUPS ALL_REPORTS;

can also be entered in this format:
DEFINE REPORT NEW_REPORT DESC ’New report definition’

QUERY SQLQUERY FORM QMFFORM
BATCH PRINT DAILY
GROUPS ALL_REPORTS;

Identifiers
Identifiers are used as names or components of names. Identifiers can be either
long or short.

A long identifier is an identifier that has a maximum length of 18 bytes. If you use
a delimited long identifier, quotation marks are not included in the 18-byte length
restriction unless they are part of the name.

You can also use sequences of double-byte characters in long delimited identifiers.
Each sequence must begin with a shift-out character and end with a shift-in
character. The shift-out and shift-in characters are considered part of the identifier.

A short identifier has a maximum length of 8 bytes and must follow the MVS rules
for member names.

Comments
A comment provides documentation within the report definition language.
Comments can be:
v A sequence of characters starting with a double minus sign (--) and ending at

the end of the line.
If you begin a comment with a double minus sign (--), the comment is ended at
the end of a line. To create multiple-line comments, you must specify double
minus signs (--) at the beginning of each comment line.
For example:

14-1



-- A comment line must be on one line only
-- But, you can have multiple-line comments

v A sequence of characters starting with slash asterisk (/*) and ending with
asterisk slash (*/).
If you begin a comment with /*, the comment is not ended until a */ is
encountered. Therefore, if you want multiple-line comments, you begin a
comment with /* and create lines of comments. At the end of the last line of
comments, you add */. For example:
/* This comment line stretches over more
than one line */

Character string constants
A character string constant is a sequence of characters that starts and ends with an
apostrophe.

You can include double-byte characters in character string constants. Each string of
double-byte characters must be enclosed between shift-out and shift-in characters.

To include an apostrophe in a character string constant, use two consecutive
apostrophes.

Examples of character string constants include:

’2000-5-15’

’32’

’DON’T CHANGE’

Identifiers

14-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Chapter 15. Report definition language statements

The report definition language consists of statements that you can use to write
report definitions and to write group definitions for sets of reports. You can also
delete report and group definitions that you have created and stored.

This section provides an alphabetical listing of the report definition language
statements. For each statement, this section describes:
v The purpose of the statement
v The syntax used for the statement
v Parameters (clauses and keywords) that you can specify for the statement
v Examples of how to use the statement

For more information about how to read the syntax diagrams shown in this
chapter, see Chapter 7, “How to read the syntax diagrams,” on page 7-1.

DEFINE GROUP
Purpose

Use the DEFINE GROUP statement to assign an ID to a set of reports that you
plan to create later. You can also specify a group owner and a description for the
group.

Note: You specify which reports are assigned to this group using the GROUPS
clause of the DEFINE REPORT statement.

Format

►► DEFINE GROUP group-identifier ▼

.

VERSION string-constant
OWNER user-identifier
DESC 'text'

►◄

Parameters

group-identifier
Specifies a long identifier for the ID of this group of reports.

VERSION string-constant
The string specified by the string-constant is stored together with the
definition, to identify the statement that was used to create the definition.
The string can be at most 18 bytes long. Omitted VERSION means the
same as specifying VERSION ’.

OWNER user-identifier
Specifies a short identifier for the owner of the group. If you specify a
group owner, only that owner can view and modify the group of reports.

If you do not specify OWNER, the report group is public (it is accessible
by all users).

15-1



DESC 'text'
Specifies a description to be used for this report group, where text can be
any character string up to 50 characters long (characters over the
50-character maximum are truncated). You can include double-byte
character set (DBCS) characters in text.

The group description appears in the reporting dialog when the group
definition is displayed.

Examples

Assume that you want to create a report group called CICS that will contain all
reports produced from CICS data. Use the DEFINE GROUP statement shown in
Figure 15-1.

DEFINE REPORT
Purpose

Use the DEFINE REPORT statement to create a report. You can specify how the
report is generated and identify the groups to which the report belongs.

Format

►► DEFINE REPORT long-identifier ►

DEFINE GROUP CICS
DESC ’CICS Reports’;

Figure 15-1. DEFINE GROUP statement

DEFINE GROUP

15-2 Tivoli Decision Support for z/OS: Language Guide and Reference



► ▼

▼

▼

▼

.

VERSION string-constant
OWNER user-identifier
DESC 'text'
TYPE choice
BATCH

PRINT SAVE DAILY
WEEKLY
MONTHLY

QUERY query-name
FORM form-name
CHART format-name
FILE member-name

,

ATTRIBUTES long-identifier
,

GROUPS group-identifier
,

VARIABLES variable

►◄

choice

def.QUERY TABDATA GRAPHDATA

variable:

long-identifier
CHAR
NUMERIC
DATE
TIME
TIMESTAMP

REQUIRED DEFAULT 'text'

Parameters

long-identifier
Specifies a long identifier as the ID of the report.

VERSION string-constant
The string specified by the string-constant is stored together with the
definition, to identify the statement that was used to create the definition.
The string can be at most 18 bytes long. Omitted VERSION means the
same as specifying VERSION ’.

OWNER user-identifier
Specifies a short identifier as the owner of the report. If you specify
OWNER, only that owner can view or modify the report. If you do not
specify OWNER, the report is public (accessible by all users).

DESC 'text'
Specifies a description to be used for this report, where text can be any

DEFINE REPORT

Chapter 15. Report definition language statements 15-3



character string up to 50 characters long (characters over the 50-character
maximum are truncated). You can include double-byte character set (DBCS)
characters in text.

The report description appears in the reporting dialog when the report
definition is displayed.

TYPE Specifies the kind of report, where TYPE can be:

QUERY
Specifies that the report is the displayed output of a QMF query. If
you specify TYPE QUERY, you must also specify the QUERY clause.
The default TYPE is QUERY.

TABDATA
Specifies that the report is a saved tabular report. If you specify
TYPE TABDATA, you must also specify the FILE clause.

GRAPHDATA
Specifies that the report is a saved graphic report. If you specify
TYPE GRAPHDATA, you must also specify the FILE clause.

BATCH
Specifies that the report is produced in batch. If you specify the BATCH
keyword, you must also specify TYPE QUERY and the QUERY clause.

You can specify these options on the BATCH keyword:

PRINT
Specifies that the report is printed when produced in batch.

SAVE Specifies that the report is saved in the member specified by the
FILE option when the report is produced in batch.

DAILY
Specifies that the report is produced daily.

WEEKLY
Specifies that the report is produced weekly.

MONTHLY
Specifies that the report is produced monthly.

QUERY query-name
Identifies the data set member that contains the QMF query used for the
report, where query-name must be a previously defined QMF query. This
query will be imported into QMF when the statement is executed.

FORM form-name
Identifies the data set member that contains the QMF form used for this
report, where form-name must be a previously defined QMF form. This
form is imported into QMF when the statement is executed.

CHART format-name
Specifies that the report is a graphic report, where format-name is the name
of the GDDM-ICU format used for this chart.

Note: If you do not specify the CHART clause, a tabular report is
assumed.

FILE member-name
Specifies the member that a saved report is retrieved from. It is also used
by batch reporting for saving the report. (member-name must be a short
identifier.)

DEFINE REPORT

15-4 Tivoli Decision Support for z/OS: Language Guide and Reference



ATTRIBUTES long-identifier, ...
Identifies the attributes of the report. When you display reports using the
reporting dialog, you can display all the reports that have the same
attribute.

GROUPS group-identifier, ...
Specifies the group or groups to which this report belongs, where
group-identifier is a long identifier that corresponds to a previously defined
group.

VARIABLES long-identifier, ...
Specifies variables (besides the variables defined in the QMF query) that
must be supplied before the report is produced. (The maximum length for
the variables is 17.) If the report will be produced online from the
reporting dialog, the dialog prompts you to provide these variables. If the
report is produced in batch, you must include these variables in the job
used to produce the report.

Variables are also extracted from the query, so this clause is optional if you
do not want special checks or functions.

For each variable, you can specify these parameters:

CHAR|NUMERIC|DATE|TIME|TIMESTAMP
Specifies the data type of the variable.

REQUIRED
Specifies that the variable is required. You must specify a value for
this variable before the report is produced.

DEFAULT 'text'
Specifies a default value for the variable, where text can be up to
40 characters.

Examples

Assume that you have created (and exported) a QMF query called DRLQCIEX and
a QMF form called DRLFCIEX. You want to create a report that uses this query
and form. It will have attributes of CICS, PERFORMANCE, and EXCEPTION. It
will also belong to groups CICS and MGMT.

To write a report definition based on this information, use the DEFINE REPORT
statement shown in Figure 15-2.

DROP GROUP
Purpose

Use the DROP GROUP statement to delete a report group definition that you have
previously created.

DEFINE REPORT CICS_EXC
DESC ’CICS Exceptions’
QUERY DRLQCIEX
FORM DRLFCIEX
ATTRIBUTES CICS, PERFORMANCE, EXCEPTION
GROUPS CICS, MGMT;

Figure 15-2. DEFINE REPORT statement

DEFINE REPORT

Chapter 15. Report definition language statements 15-5



Format

The syntax of the DROP GROUP statement is:

►► DROP GROUP group-identifier
OWNER user-identifier

►◄

Parameters

You can specify these parameters for the DROP GROUP statement:

group-identifier
Specifies the name of the group that you want to drop.

OWNER user-identifier
Identifies the owner of the group that you want to drop. If you drop a
public group (a group accessible by all users), you need not specify the
OWNER clause.

Examples

Assume that you created and stored a report group named CICS. To delete this
group definition, use the DROP GROUP statement shown in Figure 15-3.

DROP REPORT
Format

Use the DROP REPORT statement to delete a report definition that you previously
created and stored.

The syntax of the DROP REPORT statement is:

►► DROP REPORT long-identifier
OWNER user-identifier

►◄

Parameters

You can specify these parameters with the DROP REPORT statement:

long-identifier
Specifies the name of the report that you want to drop.

OWNER user-identifier
Specifies the owner of the report that you want to drop. If you drop a
public report (a report that is accessible to all users), you need not specify
the OWNER clause.

DROP GROUP CICS;

Figure 15-3. DROP GROUP statement

DROP GROUP

15-6 Tivoli Decision Support for z/OS: Language Guide and Reference



Examples

Assume that your user identifier is USER1 and you have a private report called
USER_EXC that you want to delete. To delete this report, use the DROP REPORT
statement shown in Figure 15-4.

DROP REPORT USER_EXC OWNER USER1;

Figure 15-4. DROP REPORT statement

DROP REPORT

Chapter 15. Report definition language statements 15-7



15-8 Tivoli Decision Support for z/OS: Language Guide and Reference



Part 5. Appendixes



Tivoli Decision Support for z/OS: Language Guide and Reference



Appendix A. Log and record procedures

This appendix contains Product-sensitive Programming Interface and Associated
Guidance Information.

Although the log collector provides extensive processing capabilities, you might
decide to create your own procedures to process data before it is processed using
the stored definitions.

In particular, you must use own procedures to:
v Process data in unusual formats.
v Cross-reference data between parallel repeated sections and between records.

You write these procedures in assembler or C. There are two types of procedure:

Log procedures
Invoked for all records read from the log data set.

Record procedures
Invoked only for the type of records you specify.

Figure A-1 shows an example of the processing that occurs when you use log and
record procedures.

As shown in the figure, the log procedure LOGPGM processes each record from
the log data set and produces three internal records of types RTYPE1, RTYPE2, and
RTYPE3, respectively. Each of these record types must be defined to the log
collector by means of a DEFINE RECORD statement, and can be specified as the
source of a DEFINE UPDATE statement. In the example, each of the three record
types is so specified, and the data from each of them is used to update the data
tables. (Note that the procedure is not limited to producing only one internal
record of each type; there can be any number within each type.)

An internal record produced by one procedure may be used as input to another
record procedure. In the example of Figure A-1, the internal records of type
RTYPE1, besides being used in an update, are processed by a record procedure
RPROC1. This procedure produces internal records of type RTYPE4. Again, this

LOGPGMLog record

U
P
D
A
T
E
S

RPROC1

RPROC2

RTYPE1

RTYPE3

RTYPE5

RTYPE4

RTYPE2

Figure A-1. Processing for log and record procedures

A-1



record type must be defined by means of a DEFINE RECORD statement, and the
data from the record are used to update the data tables via an update definition.

In a similar way, internal records of type RTYPE3 are processed by a record
procedure RPROC2 that produces internal records of type RTYPE5.

This scheme may be made as complex as needed; however, the output of a record
procedure must not be used, directly or indirectly, as input to the same procedure.

Specifying log and record procedures
About this task

You must define your log and record procedures to the log collector using the log
collector language. To define a log procedure, use the LOGPROC clause of the
DEFINE LOG statement. This is an example of a log procedure definition:

The log procedure LOGPGM is called for every record that occurs in a log of type
TST_LOG. LOGPGM is a program written in assembler.

To define a record procedure, use the DEFINE RECORDPROC statement. This is
an example of a record procedure definition:

The record procedure RPROC1 is called for every record of type RTYPE1. RPROC1
is a program written in C. You must define the record type RTYPE1 before you
execute this DEFINE RECORDPROC statement.

When you run the log collector, you must ensure that load modules LOGPGM and
RPROC1 containing the specified procedures are present in an accessible load
library.

Calling log and record procedures
About this task

Before the log collector begins processing a log data set, it passes control to each of
the defined log and record procedures. The procedure does not read data at this
time and no output records are generated. Instead, the procedure performs any
required initialization, such as buffer and work area allocation. The procedure can
return the address of the work area in a parameter. Then, each time the procedure
is called, the log collector passes this address to it. 

DEFINE LOG TST_LOG
LOGPROC LOGPGM

LANGUAGE ASM;

Figure A-2. Defining a log procedure

DEFINE RECORDPROC RPROC1
FOR RTYPE1
LANGUAGE C;

Figure A-3. Defining a record procedure

Log and record procedures

A-2 Tivoli Decision Support for z/OS: Language Guide and Reference



When the log collector processes the log, it calls the log procedure for each record
from the log, and the record procedure for each record of the type specified in the
DEFINE RECORDPROC statement. The procedure processes the record and passes
a return code back to the log collector.

The return code indicates how many records were produced by the procedure. If
the procedure did not produce output records, the log collector continues
processing the next input record. If the procedure produced one output record, it
returns a pointer to it. The log collector processes the output record, and continues
with the next input record. If the procedure produced more than one output
record, it returns a pointer to the first of them. The log collector processes the
output record, and calls the procedure again with the same input. The procedure
returns then a pointer to the next output record. This is repeated until the
procedure indicates that there are no more output records.

The log or record procedures can determine that the input record is not valid. In
which case, the log collector writes information to the DRLDUMP file. The
procedure can also immediately terminate processing.

The log collector calls each log procedure and record procedure each time after
committing the database updates.

After processing all records, the log collector calls the procedure again to perform
any required termination tasks (such as freeing work areas). This step occurs even
if the procedure specified that processing terminate immediately. During this last
call to the procedure, no input records are provided. But the procedure can
generate one or more output records.

If you specified a PARM expression in your DEFINE LOG or DEFINE
RECORDPROC statement, the procedure receives the value of that expression as a
parameter every time it is called. For example, the log procedure LOGPGM
defined by this statement receives the string that is the current value of the
variable UPDT_EXP:

Notice that the PARM expression is evaluated only once, before the first call to the
procedure. The resulting value is then passed to the procedure on all calls.

A log or record procedure may contain SQL calls. A procedure containing SQL calls
must be precompiled, and the DBRM must be bound together with the log
collector DBRM.

Calling assembler procedures
About this task

The call to a procedure written in assembler follows the standard linkage
conventions of System/390:
v R15 contains the entry address.
v R14 contains the return address.
v R13 points to a 72-byte save area.

DEFINE LOG TST_LOG
LOGPROC LOGPGM

PARM :UPDT_EXP;

Figure A-4. Supplying a parameter using the PARM option

Calling log and record procedures

Appendix A. Log and record procedures A-3



v R1 points to a parameter list.

The procedure is invoked in 31-bit mode. Before the procedure returns control, it
must perform all administrative tasks, such as restoring registers.

You can choose between two alternative interfaces to the procedure, each using a
different parameter list. You choose the interface by specifying LANGUAGE ASM
or LANGUAGE ASML on your DEFINE LOG or DEFINE LOGPROC statement.

Using LANGUAGE ASM interface
The parameter list for a log or record procedure using the interface specified as
LANGUAGE ASM has this layout:

CALL_TYPE
A fullword. Indicates the type of call. It can have one of these values:
0 First call
1 Normal call
2 Last call
3 Commit call.

RETURN_CODE
A fullword. Receives the return code from the procedure. The return code
can have one of these values:
0 No record has been built.
1 A record has been built, and there is no more output for this input.
2 A record has been built, and there are more output records for this

input.
3 No record has been built because the input record is not correct.
4 No record has been built and processing should end immediately.

The values of return code expected from different call types are shown in
Table A-1 on page A-8.

P_IN_RECORD
A fullword containing a pointer to the input record. The pointer is
supplied only on those call types that receive an input record. Otherwise it
is 0.

The procedure must not modify the input record or the pointer to it.

P_OUT_RECORD
A fullword. Receives a pointer to the output record built by the procedure.
The log collector uses this pointer only if return code indicates that a
record has been built.

The value of P_OUT_RECORD on entry to the procedure is undefined. It is
normally not the same as set by the preceding call to the procedure.

PARMLIST DSECT
RESERVED DS A Not used by the procedure
P_CALL_TYPE DS A Address of CALL_TYPE
P_RETURN_CODE DS A Address of RETURN_CODE
PP_IN_RECORD DS A Address of P_IN_RECORD
PP_OUT_RECORD DS A Address of P_OUT_RECORD
PP_WORK_AREA DS A Address of P_WORK_AREA
PP_PARM DS A Address of P_PARM

Calling assembler procedures

A-4 Tivoli Decision Support for z/OS: Language Guide and Reference



The first two bytes of the output record must contain the length of the
record as an unsigned binary integer. The length includes these two bytes.

P_WORK_AREA
A fullword. Provides a way for preserving information between the
consecutive calls to the procedure. The value placed in P_WORK_AREA by the
first call is supplied there on all subsequent calls to the procedure. You will
normally use it as a pointer to a work area that contains all data that you
want to preserve between the calls.

P_PARM A fullword. Contains a pointer to the result of the expression specified
using the PARM option. The format of the result depends on data type of
the expression, and may be an integer, an 8-byte floating-point number, or
a character string preceded by a two-byte length field. (The designer of the
procedure must know what format to expect and how to interpret the
value.)

If the result of PARM expression is null, the value passed to the procedure
is a zero or an empty string, depending on data type of the expression. If
PARM was not specified for the procedure, P_PARM is 0.

Table A-1 on page A-8 summarizes the use of parameters in different types of calls.

Using LANGUAGE ASML interface
The interface specified as LANGUAGE ASML differs from that specified as
LANGUAGE ASM by the method of returning the length of the output record.
Instead of the length being returned in a field within the record, it is returned in a
separate parameter. Another difference is the absence of RESERVED as the first
parameter. The parameter list has this layout:

OUT_LENGTH
A fullword. Receives length of the output record.

Other parameters are the same as for the ASM interface. Notice the absence of
RESERVED.

Calling C procedures
The procedures written in C require Version 2 of C/370™ and are run using a
persistent C environment (HOTC). The environment is established before the initial
call to the procedure and terminated after the last call. The environment is
implemented by modules EDCXHOTL, EDCXHOTU, and EDCXHOTT. These
modules are a part of C/370 and are not supplied with Tivoli Decision Support for
z/OS. To execute procedures written in C, you must link edit these modules with
the Tivoli Decision Support for z/OS module DRL2CTOP.

PARMLIST DSECT
P_CALL_TYPE DS A Address of CALL_TYPE
P_RETURN_CODE DS A Address of RETURN_CODE
PP_IN_RECORD DS A Address of P_IN_RECORD
PP_OUT_RECORD DS A Address of P_OUT_RECORD
P_OUT_LENGTH DS A Address of OUT_LENGTH
PP_WORK_AREA DS A Address of P_WORK_AREA
PP_PARM DS A Address of P_PARM

Calling assembler procedures

Appendix A. Log and record procedures A-5



Figure A-5 shows sample JCL that you can use to link edit DRL2CTOP. (See also
DRLJCLNK in DRL180.SDRLCNTL.) Check the names of C/370 libraries on your
installation. If they are not EDC.V2R1M0.SEDCSPC and EDC.V2R1M0.SEDCBASE,
use your names instead.

The persistent C environment requires that you specify the size of the stack to be
used by the C procedures. (The size of the stack is passed as a parameter to
initialization routine EDCXHOTC. Refer to IBM C/370 Programming Guide for more
information.)

The log collector specifies for you the stack size of 4 096 bytes. You can request a
different stack size using the log collector variable CSTACK. The value of the
variable specifies the size of the stack in bytes or Kbytes, like this:
SET CSTACK =’8192’;
SET CSTACK =’2K’;

The first SET statement specifies a stack of 8 192 bytes. The second specifies a
stack of 2 048 bytes. The log collector does not check the value that you specify.
Specifying a value that is too large may cause an unpredictable result. The stack is
always allocated above the 16MB line.

Using LANGUAGE C interface
A log or record procedure written in C must conform to this declaration:

//jobname JOB parameters
//LKED EXEC PGM=IEWL,
// PARM=’DCBS,MAP,LIST,LET,TEST,RENT,XREF,REUS,RMODE(ANY),AMODE(31)’
//SYSLIB DD DISP=SHR,DSN=EDC.V2R1M0.SEDCSPC
// DD DISP=SHR,DSN=EDC.V2R1M0.SEDCBASE
//SYSLMOD DD DISP=OLD,DSN=DRL180.SDRLLOAD
//DD1 DD DISP=SHR,DSN=DRL180.ADRLLOAD
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE(32000,(30,30))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

INCLUDE DD1(DRLPCIBM)
INCLUDE SYSLMOD(DRL2CTOP)
INCLUDE DD1(DRLPXPRO)
INCLUDE DD1(DRLPXEPI)
ENTRY DRL2CTOP
NAME DRL2CTOP(R)

Figure A-5. Sample JCL for linking the DRL2CTOP module

#pragma linkage(name,OS)

void name(int reserved,
int call_type,
int return_code,
in_record **p_in_record,
out_record **p_out_record,
work_area **p_work_area,
parm_type **p_parm)

Calling C procedures

A-6 Tivoli Decision Support for z/OS: Language Guide and Reference



name The name of the procedure, as specified by the DEFINE LOG or DEFINE
RECORDPROC statement.

reserved
This parameter is not used by the procedure.

call_type
Indicates the type of call. It can have one of these values:
0 First call
1 Normal call
2 Last call
3 Commit call.

return_code
Receives the return code from the procedure. The return code can have one
of these values:
0 No record has been built.
1 A record has been built, and there is no more output for this input.
2 A record has been built, and there are more output records for this

input.
3 No record has been built because the input record is not correct.
4 No record has been built and processing should end immediately.

The values of return code expected from different call types are shown in
Table A-1 on page A-8.

*p_in_record
A pointer to the input record. It is supplied only on those call types that
receive an input record. Otherwise it is null.

in_record
A structure representing the layout of the input record. The procedure
must not modify the input record or the pointer to it.

*p_out_record
Receives a pointer to the output record built by the procedure. The log
collector uses this pointer only if return code indicates that a record has
been built.

The value of *p_out_record on entry to the procedure is undefined. It is
normally not the same as set by the preceding call to the procedure.

out_record
A structure representing the layout of the output record. This layout must
be independently defined to the log collector by means of a DEFINE
RECORD statement.

The first two bytes of the record must contain the length of the record in
the form of an unsigned short integer.

*p_work_area
Provides a way for preserving information between the consecutive calls to
the procedure. The value returned in this parameter by the first call is
supplied in this parameter on all subsequent calls to the procedure. You
will normally use it as a pointer to a work area that contains all data that
you want to preserve between the calls.

work_area
A structure containing the data that you want to preserve between the calls
to the procedure.

Calling C procedures

Appendix A. Log and record procedures A-7



*p_parm
A pointer to the result of the expression specified by the PARM option.

parm_type
Data type of the result of PARM expression. It depends on data type of the
expression, and may be an integer, a floating-point number, or a character
string preceded by a two-byte length. Depending on what is expected,
parm_type should be one of these:
int
double
struct

{
short lgth;
char parm[n];

}

where n is not less than the maximum expected length of the string. (The
designer of the procedure must know what type to expect and how to
interpret the value.)

If the result of PARM expression is null, the value passed to the procedure
is a zero or an empty string, depending on the type of the expression. If
PARM was not specified for the procedure, p_parm is null.

Table A-1 summarizes the use of parameters in different types of calls.

Table A-1. Input and output of log and record procedures

Input Output

CALL_TYPE
;call_type

P_IN_RECORD
;*p_in_record

P_WORK_AREA
;*p_work_area

P_PARM
;*p_parm

RETURN_CODE
;return_code

P_OUT_RECORD
;*p_out_record

OUT_LENGTH
;(ASML

only)
P_WORK_AREA

;*p_work_area

0 ;(first) null null &parm or
null

0 not used not used &work_area

4 not used not used &work_area

1 ;(normal) &in_record &work_area &parm or
null

0 not used not used &work_area

1 &out_record out length &work_area

2 &out_record out length &work_area

3 not used not used &work_area

4 not used not used &work_area

2 ;(last) null &work_area &parm or
null

0 not used not used &work_area

1 &out_record out length &work_area

2 &out_record out length &work_area

3 ;(commit) null &work_area &parm or
null

0 not used not used &work_area

4 not used not used &work_area

Example log procedures
Suppose you want to process a log XMP where each record contains a date in the
format exemplified by 14MAR00. This date format is not supported by the log
collector. You might define the three parts of the date as three fields in CHAR
format, use the facilities of the log collector language to build from them a date
string 00-03-14, and then convert that string to date using the DATE function. You

Calling C procedures

A-8 Tivoli Decision Support for z/OS: Language Guide and Reference



would have to do this in every update definition that uses the date. If you have
many such update definitions, it may be simpler to convert the date using a log
procedure.

An example of a log procedure that you might write to perform this conversion is
shown in “Example C log procedure.” An Assembler version of the same
procedure is shown in “Example Assembler log procedure” on page A-12.

In order to illustrate the use of the parameter specified via PARM clause, the
example assumes that the month part of the date in the input record may
sometimes be missing or invalid. In such a case, you want to replace it by a default
supplied by means of PARM.
DEFINE LOG XMP

LOGPROC XMPPROC
LANGUAGE C
PARM :DEF_MONTH;

The default month is supplied via the variable DEF_MONTH that must be set
every time you work with the log XMP. The value of the variable should be a
two-digit string from 01 through 12.

The input record from the log data set is represented in the procedure by the
structure in_record. The first seven bytes contain date as described above, and the
next six bytes contain a transaction count represented as an external integer.

The structure out_record represents a record built by the procedure. The record
starts with a two-byte length field, followed by the converted date in the format
DATE(YYMMDD), followed by a copy of transaction count from the input record.
You define this record to the log collector like this:
DEFINE RECORD XMP_REC

IN LOG XMP
FIELDS
(RECLEN OFFSET 0 LENGTH 2 BINARY,
DATE OFFSET 2 LENGTH 6 DATE(YYMMDD),
TRANS_COUNT OFFSET 8 LENGTH 6 EXTERNAL INTEGER);

You cannot build the output record in a variable that is local to your procedure,
because it must be accessible to the log collector after a return from the procedure.
So, the first call to the procedure must allocate a buffer for the output record that
will remain allocated until it is freed by the last call.

The output buffer is placed in a data area that is allocated by the first call and
freed by the last call. The layout of this area is represented by the structure
work_area. In this example, the work area contains only the output buffer. In
general, you include there all information that you need to store between the calls
to the procedure.

Other details of the procedure are explained by comments.

Example C log procedure
This section shows an example C log procedure. An Assembler version of the same
procedure is shown in “Example Assembler log procedure” on page A-12.

/*==================================================================*/
/* Example of a log procedure written in C */
/*==================================================================*/
#pragma linkage(XmpProc,OS)

Example log procedures

Appendix A. Log and record procedures A-9



#include <stdio.h>
#include <stdlib.h>

typedef struct /* Input record */
{ char day[2]; /* Day, DD */

char month[3]; /* Month, MMM */
char year[2]; /* Year, YY */
char trans_count[6]; /* Transaction count */

} in_record;

typedef struct /* Output record */
{ short lgth; /* Length */

char year[2]; /* Year, YY */
char month[2]; /* Month, MM */
char day[2]; /* Day, DD */
char trans_count[6]; /* Transaction count */

} out_record;

typedef struct /* Work area */
{ out_record out_buffer; /* Buffer for output record */
} work_area;

typedef struct /* Parm string */
{ short lgth; /* Length */

char parm[2]; /* Default month, MM */
} parm_string;

/*------------------------------------------------------------------*/
/* Start of procedure */
/*------------------------------------------------------------------*/
void XmpProc
(int reserved,
int call_type,
int return_code,
in_record **p_in_record,
out_record **p_out_record,
work_area **p_work_area,
parm_string **p_parm)

{
/*----------------------------------------------------------------*/
/* Local variables */
/*----------------------------------------------------------------*/
in_record *pi; /* Local ptr to input record */
work_area *pw; /* Local ptr to work area */
parm_string *pp; /* Local ptr to parm string */
int m; /* Index in month table */
char *month_in[12] = /* Month codes in */

{
"JAN","FEB","MAR","APR","MAY","JUN",
"JUL","AUG","SEP","OCT","NOV","DEC"
};

char *month_out[12] = /* Month codes out */
{
"01","02","03","04","05","06",
"07","08","09","10","11","12"
};

switch (call_type)
{
/*----------------------------------------------------------------*/
/* First call */
/*----------------------------------------------------------------*/
case (0):

/* Allocate work area. */
pw = (work_area *)malloc(sizeof(work_area));

Example log procedures

A-10 Tivoli Decision Support for z/OS: Language Guide and Reference



/* Set output record length. */
pw->out_buffer.lgth = sizeof(out_record);

/* Save work area ptr and return indicating success. */
*p_work_area = pw;
return_code = 0;
break;

/*----------------------------------------------------------------*/
/* Normal call */
/*----------------------------------------------------------------*/
case (1):

/* Set local pointer to input record. */
/* Set local pointer to parm value. */
/* Retrieve pointer to work area. */
pi = *p_in_record;
pp = *p_parm;
pw = *p_work_area;

/* Copy year, day, and transaction count to output record. */
/* Set month to default. */
strncpy(pw->out_buffer.year,pi->year,2);
strncpy(pw->out_buffer.month,pp->parm,2);
strncpy(pw->out_buffer.day,pi->day,2);
strncpy(pw->out_buffer.trans_count,pi->trans_count,6);

/* Find the three-letter month code in the table. */
/* If found, set corresponding month number in output record. */
for (m=0; m<12; m++)
{
if (strncmp(month_in[m],pi->month,3)==0)
{
strncpy(pw->out_buffer.month,month_out[m],2);
break;
}
}

/* Return pointer to output record and indicate 1 record built. */
*p_out_record = &(pw->out_buffer);
return_code = 1;
break;

/*----------------------------------------------------------------*/
/* Last call */
/*----------------------------------------------------------------*/
case (2):

/* Free work area. */
free(*p_work_area);

/* Return indicating no record built. */
return_code = 0;
break;

/*----------------------------------------------------------------*/
/* Commit call */
/*----------------------------------------------------------------*/
case (3):

/* No action: indicate success. */
return_code = 0;
break;

/*----------------------------------------------------------------*/
/* Invalid call type */
/*----------------------------------------------------------------*/

Example log procedures

Appendix A. Log and record procedures A-11



default:

/* Request termination. */
return_code = 4;
break;

}
}

Example Assembler log procedure
This section shows an Assembler version of the C log procedure shown in
“Example C log procedure” on page A-9.
*======================================================================

* Example of a log procedure written in assembler (ASM interface)
*======================================================================
*----------------------------------------------------------------------
* Standard prologue
*----------------------------------------------------------------------
XMPPROC CSECT ,
XMPPROC AMODE 31
XMPPROC RMODE ANY

DS 0H
USING *,R15
B PROLOG Branch around identification.
DC AL1(16)
DC C’XMPPROC 95.150’ Standard module identification
DROP R15

PROLOG STM R14,R12,12(R13) Save registers.
LR R12,R15 Set R12 as base for the module.
USING XMPPROC,R12 Use R12 as base.

*
SR R15,R15 | Get dynamic storage
LA R0,DYNSIZE | for the module.
GETMAIN RU,LV=(0),SP=(15) | Address to R1.

*
LR R15,R13 |
LR R13,R1 | Link save areas.
USING DYNSTOR,R13 | Use R13 as base
ST R15,4(,R13) | for dynamic storage.
ST R13,8(,R15) |

*
L P_LIST,24(R15) Retrieve parameter list address
USING PARMLIST,P_LIST Use it to address parameter list

*
USING IN_RECORD,PI Use PI to address IN_RECORD
USING WORK_AREA,PW Use PW to address WORK_AREA
USING OUT_RECORD,PW Record buffer is first in WORK_AREA
USING PARM_STRING,PP Use PP to address PARM_STRING

*----------------------------------------------------------------------
* Branch according to call type
*----------------------------------------------------------------------

L R1,P_CALL_TYPE R1 = addr of CALL_TYPE
L R1,0(,R1) R1 = CALL_TYPE
BM INVALID_CALL If CALL_TYPE<0
LA R0,3
CR R1,R0
BH INVALID_CALL If CALL_TYPE>3
SLL R1,2 R1 = CALL_TYPE * 4
B BRANCH_TABLE(R1) Branch according to CALL_TYPE

*
BRANCH_TABLE DS 0H

B FIRST_CALL
B NORMAL_CALL
B LAST_CALL
B COMMIT_CALL

Example log procedures

A-12 Tivoli Decision Support for z/OS: Language Guide and Reference



*----------------------------------------------------------------------
* First call
*----------------------------------------------------------------------
FIRST_CALL DS 0H
*
* Allocate work area
*

SR R15,R15 | Get storage
LA R0,WORKSIZE | for work area.
GETMAIN RU,LV=(0),SP=(15) | Address to R1.

*
LR PW,R1 PW = address of work area.

*
* Set output record length
*

LA R0,OUTSIZE
STH R0,OUT_LGTH OUT_LGTH = length of OUT_RECORD

*
* Save work area address and return indicating success
*

L R1,PP_WORK_AREA
ST PW,0(,R1) P_WORK_AREA = PW
SR R0,R0
L R1,P_RETURN_CODE
ST R0,0(,R1) RETURN_CODE = 0
B EPILOG

*----------------------------------------------------------------------
* Normal call
*----------------------------------------------------------------------
NORMAL_CALL DS 0H
*
* Set local pointer to input record.
* Set local pointer to parm value.
* Retrieve pointer to work area.
*

L R1,PP_IN_RECORD
L PI,0(,R1) PI = address of IN_RECORD
L R1,PP_PARM
L PP,0(,R1) PP = address of PARM_STRING
L R1,PP_WORK_AREA
L PW,0(,R1) PW = address of WORK_AREA

*
* Copy year, day and transaction count to output record.
* Set month to default.
*

MVC OUT_YEAR,IN_YEAR
MVC OUT_MONTH,PARM
MVC OUT_DAY,IN_DAY
MVC OUT_TRANS_COUNT,IN_TRANS_COUNT *

* Find the three-letter month code in table.
* If found, set corresponding month number in output record.
*

LA M,1 M = 1
*
LOOP LR R1,M R1 = M

SLL R1,2 R1 = M * 4
LA R1,MONTHS-4(R1) R1 = address of MONTHS(M)
CLC 0(3,R1),IN_MONTH
BE FOUND If MONTH(M)=IN_MONTH
LA M,1(,M) M = M + 1
LA R2,12
CR M,R2
BNH LOOP If M<=12
B READY If M>12

*
FOUND LR R1,M R1 = M

SLL R1,1 R1 = M * 2

Example log procedures

Appendix A. Log and record procedures A-13



LA R1,DEC_M-2(R1) R1 = address of DEC_M(M)
MVC OUT_MONTH,0(R1) OUT_MONTH = DEC_M(M)

*
* Return pointer to output record and indicate one record built.
*
READY EQU *

L R1,PP_OUT_RECORD
ST PW,0(,R1) P_OUT_RECORD = PW
LA R0,1
L R1,P_RETURN_CODE
ST R0,0(,R1) RETURN_CODE = 1
B EPILOG

*----------------------------------------------------------------------
* Last call
*----------------------------------------------------------------------
LAST_CALL DS 0H
*
* Free work area
*

L R1,PP_WORK_AREA
L R1,0(,R1) R1 = address of WORK_AREA
LA R15,0
LA R0,WORKSIZE R0 = length of WORK_AREA
FREEMAIN RU,LV=(0),A=(1),SP=(15)

*
* Return code indicating no record built
*

SR R0,R0
L R1,P_RETURN_CODE
ST R0,0(,R1) RETURN_CODE = 0
B EPILOG

*----------------------------------------------------------------------
* Commit call
*----------------------------------------------------------------------
COMMIT_CALL DS 0H
*
* No action: indicate success.
*

SR R0,R0
L R1,P_RETURN_CODE
ST R0,0(,R1) RETURN_CODE = 0
B EPILOG

*----------------------------------------------------------------------
* Invalid call type
*----------------------------------------------------------------------
INVALID_CALL DS 0H
*
* Request termination.
*

LA R0,4
L R1,P_RETURN_CODE
ST R0,0(,R1) RETURN_CODE = 4
B EPILOG

*----------------------------------------------------------------------
* Standard epilogue
*----------------------------------------------------------------------
EPILOG DS 0H

LR R1,R13 | R1 = address of dynamic storage
L R13,4(,R13) | Restore R13 from save area

*
LA R15,0 | Free dynamic storage
LA R0,DYNSIZE
FREEMAIN RU,LV=(0),A=(1),SP=(15)

*
LM R14,R12,12(R13) Restore registers
BR R14 Return to caller

Example log procedures

A-14 Tivoli Decision Support for z/OS: Language Guide and Reference



*----------------------------------------------------------------------
* Table of three-letter month codes
*----------------------------------------------------------------------
MONTHS DC CL4’JAN’

DC CL4’FEB’
DC CL4’MAR’
DC CL4’APR’
DC CL4’MAY’
DC CL4’JUN’
DC CL4’JUL’
DC CL4’AUG’
DC CL4’SEP’
DC CL4’OCT’
DC CL4’NOV’
DC CL4’DEC’

*----------------------------------------------------------------------
* Table of month numbers
*----------------------------------------------------------------------
DEC_M DC CL2’01’

DC CL2’02’
DC CL2’03’
DC CL2’04’
DC CL2’05’
DC CL2’06’
DC CL2’07’
DC CL2’08’
DC CL2’09’
DC CL2’10’
DC CL2’11’
DC CL2’12’

*----------------------------------------------------------------------
* Dynamic storage for the module
*----------------------------------------------------------------------
DYNSTOR DSECT

DS 18F Save area
DS 0D

DYNSIZE EQU *-DYNSTOR
*
*----------------------------------------------------------------------
* Parameter list
*----------------------------------------------------------------------
PARMLIST DSECT
RESERVED DS A Not used by the procedure
P_CALL_TYPE DS A Address of CALL_TYPE
P_RETURN_CODE DS A Address of RETURN_CODE
PP_IN_RECORD DS A Address of P_IN_RECORD
PP_OUT_RECORD DS A Address of P_OUT_RECORD
PP_WORK_AREA DS A Address of P_WORK_AREA
PP_PARM DS A Address of P_PARM
*
*----------------------------------------------------------------------
* Input record
*----------------------------------------------------------------------
IN_RECORD DSECT
IN_DAY DS CL2 Day, DD
IN_MONTH DS CL3 Month, MMM
IN_YEAR DS CL2 Year, YY
IN_TRANS_COUNT DS CL6 Transaction count
*
*----------------------------------------------------------------------
* Output record
*----------------------------------------------------------------------
OUT_RECORD DSECT
OUT_LGTH DS H Length
OUT_YEAR DS CL2 Year, YY
OUT_MONTH DS CL2 Month, MM

Example log procedures

Appendix A. Log and record procedures A-15



OUT_DAY DS CL2 Day, DD
OUT_TRANS_COUNT DS CL6 Transaction count
OUTSIZE EQU *-OUT_RECORD
*----------------------------------------------------------------------
* Work area
*----------------------------------------------------------------------
WORK_AREA DSECT
OUT_BUFFER DS CL14 Buffer for output record

DS 0D Doubleword alignment
WORKSIZE EQU *-WORK_AREA
*----------------------------------------------------------------------
* Result of PARM expression
*----------------------------------------------------------------------
PARM_STRING DSECT
PARM_LGTH DS H Length
PARM DS CL2 Parameter string

*----------------------------------------------------------------------
* Registers
*----------------------------------------------------------------------
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
P_LIST EQU R7 Pointer to parameter list
PI EQU R8 Local pointer to input record
PW EQU R9 Local pointer to work area
PP EQU R10 Local pointer to parm string
M EQU R11 Month number

END

Example log procedures

A-16 Tivoli Decision Support for z/OS: Language Guide and Reference



Appendix B. JCL for the log collector language and report
definition language

When you use JCL to submit batch jobs for either the log collector language or the
report definition language, you can specify a number of different parameters based
on your installation. This appendix describes the parameters that you can specify.

JCL for the log collector language
Figure B-1 shows sample JCL that you can use when running the log collector in
batch. (See also DRLJCOLL in DRL180.SDRLCNTL.)

You use the PARM= parameter to define log collector variables. The string supplied
with PARM=consists of one or more variable definitions separated by blanks or
commas. A variable definition has one of these forms:

variable-name=string
&variable-name=string

It creates a variable named variable-name with a value string. The variable-name must
be an identifier and string can be any character string. If string contains blanks or
commas, it must be enclosed in quotation marks (").

For information about how variables are used, see “Using variables to modify your
text” on page 8-7 and “Obtaining the value of a variable” on page 9-4.

These four variables have a special meaning to the log collector

SYSTEM
Specifies the name of the DB2 subsystem that manages the tables that
make up the Tivoli Decision Support for z/OS database. If you do not
define this variable, it is defined by default with the value DSN.

PLAN Specifies the name of the DB2 application plan as defined in the bind job
for Tivoli Decision Support for z/OS. If you do not define this variable, it
is defined by default with the value DRLPLAN.

SYSPREFIX
Specifies the prefix of system table names. If you do not define this
variable, it is defined by default with the value DRLSYS.

SHOWINPUT
By defining this variable with value NO, you suppress copying of log

//jobname JOB parameters
//LC EXEC PGM=DRLPLC,PARM=(’SYSPREFIX=DRLSYS SYSTEM=DSN’),
// REGION=1M
//STEPLIB DD DISP=SHR,DSN=DRL180.SDRLLOAD
//DRLIN DD *

COLLECT ERR_EXMP;
//DRLLOG DD DISP=SHR,DSN=ABC.ERROR.EXAMPLE
//DRLOUT DD SYSOUT=*
//DRLDUMP DD SYSOUT=*

Figure B-1. Sample JCL for the log collector

B-1



collector statements to the DRLOUT file. But, keep in mind that you may
then have problems in interpreting the messages issued by the log
collector.

There are also other variables that have a special meaning to the log collector. They
have names starting with ZZ, and are used to control certain diagnostic functions.
See the , SH19-6902 book for their description.

You can use these DD names in the job:

DRLIN DD
Specifies the data set that contains log collector language statements. You
can use an asterisk (*) to include the statements directly in the JCL
jobstream. It can contain fixed-length or varying-length records of any
length, but the log collector reads a maximum of 72 bytes from each
record.

DRLOUT DD
Specifies the data set that will contain messages generated by the log
collector. It can have fixed length or varying-length records of any length,
but the log collector assumes a length of at least 80 bytes for formatting.
Lines that are no longer than the specified record length are wrapped to
the next line. DRLOUT is allocated as RECFM=F and LRECL=80 if no DCB
attributes are specified.

DRLLOG DD
Specifies the log data set you want to process. You can specify
concatenated data sets with different attributes. This statement is required
only for log collector statements that process log data. The date set
attributes are determined by the creator of the log.

DRLLSTxDD
Specifies the data sets that will contain output from the LIST RECORD
statement. This statement is required only if you use LIST RECORD.

DRLDUMP DD
Specifies the data set that the log collector will use to write diagnostic
information. It can have fixed-length or varying-length records of any
length, but the log collector assumes a length of at least 80 bytes for
formatting. Lines that are longer than the specified record length are
wrapped to the next line. DRLDUMP is allocated as RECFM=F and
RECL=80 if no DCB attributes are specified.

JCL for the report definition language
Figure B-2 on page B-3 shows sample JCL you can use when running the report
definition language in batch. (See also DRLJRDEF in DRL180.SDRLCNTL.)

JCL for the log collector languagelog collector language

B-2 Tivoli Decision Support for z/OS: Language Guide and Reference



You can use these DD names in the job:

DRLIN DD
Specifies the input data set that contains report definition language
statements. You can use an asterisk (*) to include the report definition
language statements directly in the JCL jobstream.

DRLOUT DD
Specifies the data set that will contain messages generated during
processing by Tivoli Decision Support for z/OS.

DRLDEFS1, DRLDEFS2, DRLDEFS3 DD
Specifies the data sets containing the QMF queries and forms defined in
the report definition statements. DRLDEFS1 is searched first and must
exist. The DRLDEFS2 and DRLDEFS3 data sets are optional and are
searched only if a defined query or form is not found in DRLDEFS1.

Reporting definition language exec
The reporting definition language uses an exec called DRLERDEF to process report
definition language statements. You can specify these parameters for the
DRLERDEF exec:

SYSTEM=db2-system
db2-system is the name of the DB2 subsystem that manages the DB2 tables
that make up the Tivoli Decision Support for z/OS database. The default
name is DSN.

//*------------------------------------------------------------------*
//EPDMRDEF EXEC PGM=IKJEFT01
//STEPLIB DD DISP=SHR,DSN=DRL180.SDRLLOAD
// DD DISP=SHR,DSN=qmfloadlibrary
// DD DISP=SHR,DSN=db2loadlibrary
//SYSPROC DD DISP=SHR,DSN=DRL180.SDRLEXEC
// DD DISP=SHR,DSN=qmfclistlibrary
//SYSEXEC DD DISP=SHR,DSN=qmfexeclibrary
//*------------------------------------------------------------------*
//* QMF allocations *
//*------------------------------------------------------------------*
//DSQDEBUG DD DUMMY
//DSQUDUMP DD DUMMY
//DSQPNLE DD DISP=SHR,DSN=QMFDSQPNLxlibrary
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),UNIT=SYSDA,
// SPACE=(CYL,(1,1),RLSE),DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)
//DSQEDIT DD DSN=&&EDIT,UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE),
// DCB=(RECFM=FBA,LRECL=79,BLKSIZE=4029)
//DSQPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//ADMGGMAP DD DISP=SHR,DSN=ADMGGMAPlibrary
//ADMCFORM DD DISP=SHR,DSN=ADMCFORMlibrary
//DSQUCFRM DD DISP=SHR,DSN=DRL180.SDRLFENU
//*------------------------------------------------------------------*
//* Performance Reporter allocations *
//*------------------------------------------------------------------*
//DRLIN DD DISP=SHR,DSN=DRL180.SDRLRENU(DRLOSAMP)
// DD DISP=SHR,DSN=DRL180.SDRLRENU(DRLORACF)
//DRLOUT DD SYSOUT=*
//DRLDEFS1 DD DISP=SHR,DSN=DRL.LOCAL.DEFS
//DRLDEFS2 DD DISP=SHR,DSN=DRL180.SDRLRENU
//DRLDEFS3 DD DISP=SHR,DSN= ....
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%DRLERDEF SYSTEM=DSN SYSPREFIX=DRLSYS PREFIX=DRL -

MODE=BATCH SHOWINPUT=YES

Figure B-2. JCL for defining reports in batch

JCL for the report definition languagereport definition language

Appendix B. JCL B-3



SYSPREFIX=sysprefix
sysprefix identifies the prefix (owner) of the system tables. The default is
DRLSYS.

PREFIX=prefix
prefix identifies the prefix (owner) of the queries and forms that are
imported to QMF during Tivoli Decision Support for z/OS report
definition processing. The default is DRL.

SHOWINPUT=YES/NO
Specifies whether the statements read from the input file (determined from
DRLIN) are written to the output message file (determined by DRLOUT).

MODE=BATCH/ONLINE
Specifies how the processing is to occur. MODE=BATCH must be specified
when you wish to process Tivoli Decision Support for z/OS report
definition statements in batch.

SHOWSQL YES/NO
The SHOWSQL parameter specifies whether SQL statements should be
shown (for debugging).

QMF=YES/NO
The QMF parameter specifies whether QMF is used.

JCL for the report definition languagereport definition language

B-4 Tivoli Decision Support for z/OS: Language Guide and Reference



Appendix C. Support information

If you have a problem with your IBM software, you want to resolve it quickly. This
section describes the following options for obtaining support for IBM software
products:
v “Searching knowledge bases”
v “Obtaining fixes”
v “Receiving weekly support updates” on page C-2
v “Contacting IBM Software Support” on page C-2

Searching knowledge bases

Searching the information center
IBM provides extensive documentation that can be installed on your local
computer or on an intranet server. You can use the search function of this
information center to query conceptual information, instructions for completing
tasks, and reference information.

Searching the Internet
If you cannot find an answer to your question in the information center, search the
Internet for the latest, most complete information that might help you resolve your
problem.

To search multiple Internet resources for your product, use the Web search topic in
your information center. In the navigation frame, click Troubleshooting and
support ► Searching knowledge bases and select Web search. From this topic, you
can search a variety of resources, including the following:
v IBM technotes
v IBM downloads
v IBM developerWorks®

v Forums and newsgroups
v Google

Obtaining fixes
A product fix might be available to resolve your problem. To determine what fixes
are available for your IBM software product, follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support/.
2. Click Downloads and drivers in the Support topics section.
3. Select the Software category.
4. Select a product in the Sub-category list.
5. In the Find downloads and drivers by product section, select one software

category from the Category list.
6. Select one product from the Sub-category list.
7. Type more search terms in the Search within results if you want to refine your

search.

C-1

http://www.ibm.com/software/support/
http://www.ibm.com/software/support/


8. Click Search.
9. From the list of downloads returned by your search, click the name of a fix to

read the description of the fix and to optionally download the fix.

For more information about the types of fixes that are available, see the IBM
Software Support Handbook at http://www-304.ibm.com/support/customercare/
sas/f/handbook/home.html.

Receiving weekly support updates
To receive weekly e-mail notifications about fixes and other software support news,
follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/support/

us/.
2. Click My support in the upper right corner of the page.
3. If you have already registered for My support, sign in and skip to the next

step. If you have not registered, click register now. Complete the registration
form using your e-mail address as your IBM ID and click Submit.

4. Click Edit profile.
5. In the Products list, select Software. A second list is displayed.
6. In the second list, select a product segment, for example, Application servers.

A third list is displayed.
7. In the third list, select a product sub-segment, for example, Distributed

Application & Web Servers. A list of applicable products is displayed.
8. Select the products for which you want to receive updates, for example, IBM

HTTP Server and WebSphere® Application Server.
9. Click Add products.

10. After selecting all products that are of interest to you, click Subscribe to email
on the Edit profile tab.

11. Select Please send these documents by weekly email.
12. Update your e-mail address as needed.
13. In the Documents list, select Software.
14. Select the types of documents that you want to receive information about.
15. Click Update.

If you experience problems with the My support feature, you can obtain help in
one of the following ways:

Online
Send an e-mail message to erchelp@ca.ibm.com, describing your problem.

By phone
Call 1-800-IBM-4You (1-800-426-4968).

Contacting IBM Software Support
IBM Software Support provides assistance with product defects.

Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM. The type of software maintenance contract that you need depends on the
type of product you have:

C-2 Tivoli Decision Support for z/OS: Language Guide and Reference

http://www-304.ibm.com/support/customercare/sas/f/handbook/home.html
http://www-304.ibm.com/support/customercare/sas/f/handbook/home.html
http://www.ibm.com/support/us/
http://www.ibm.com/support/us/


v For IBM distributed software products (including, but not limited to, Tivoli,
Lotus®, and Rational® products, as well as DB2 and WebSphere products that
run on Windows, or UNIX operating systems), enroll in Passport Advantage® in
one of the following ways:

Online
Go to the Passport Advantage Web site at http://www.lotus.com/
services/passport.nsf/ WebDocs/Passport_Advantage_Home and click
How to Enroll.

By phone
For the phone number to call in your country, go to the IBM Software
Support Web site at http://techsupport.services.ibm.com/guides/
contacts.html and click the name of your geographic region.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at https://techsupport.services.ibm.com/
ssr/login.

v For customers with IBMLink, CATIA, Linux, S/390®, iSeries, pSeries, zSeries,
and other support agreements, go to the IBM Support Line Web site at
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/
techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the contacts page of the IBM Software Support Handbook on the Web at
http://techsupport.services.ibm.com/guides/contacts.html and click the name of
your geographic region for phone numbers of people who provide support for
your location.

To contact IBM Software support, follow these steps:
1. “Determining the business impact”
2. “Describing problems and gathering information” on page C-4
3. “Submitting problems” on page C-4

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level.
Therefore, you need to understand and assess the business impact of the problem
that you are reporting. Use the following criteria:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Appendix C. Support information C-3

http://www.lotus.com/services/passport.nsf/%20WebDocs/Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/%20WebDocs/Passport_Advantage_Home
http://techsupport.services.ibm.com/guides/contacts.html
http://techsupport.services.ibm.com/guides/contacts.html
http://www-912.ibm.com/supporthome.nsf/document/32244842
http://www-912.ibm.com/supporthome.nsf/document/32244842
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006
http://www.ibm.com/servers/eserver/%20techsupport.html
http://www.ibm.com/servers/eserver/%20techsupport.html
http://techsupport.services.ibm.com/guides/contacts.html


Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little impact
on operations, or a reasonable circumvention to the problem was
implemented.

Describing problems and gathering information
When describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently. To save time, know the answers to these questions:
v What software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you make any changes to the system? For example, did you make changes

to the hardware, operating system, networking software, and so on.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submitting problems
You can submit your problem to IBM Software Support in one of two ways:

Online
Click Submit and track problems on the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html. Type your
information into the appropriate problem submission form.

By phone
For the phone number to call in your country, go to the contacts page of
the IBM Software Support Handbook at http://techsupport.services.ibm.com/
guides/contacts.html and click the name of your geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support creates an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support provides a workaround that you can implement until the
APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the
Software Support Web site daily, so that other users who experience the same
problem can benefit from the same resolution.

C-4 Tivoli Decision Support for z/OS: Language Guide and Reference

http://www.ibm.com/software/support/probsub.htm
http://techsupport.services.ibm.com/guides/contacts.htm
http://techsupport.services.ibm.com/guides/contacts.htm


Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and
changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

D-1



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

Notices

D-2 Tivoli Decision Support for z/OS: Language Guide and Reference



IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM‘s application programming interfaces.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not display.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Notices

Notices D-3



D-4 Tivoli Decision Support for z/OS: Language Guide and Reference



Glossary

administration
A Tivoli Decision Support for z/OS task
that includes maintaining the database,
updating environment information, and
ensuring the accuracy of data collected.

administration dialog
A set of host windows used to administer
Tivoli Decision Support for z/OS.

asterisk length
The length of a field that extends to the
end of the containing structure.

cascaded update
Occurs during data collection, when
information entered in one table is further
processed and entered in another table.

case expression
An expression that specifies a value as
being dependent on a given condition.

collect A process used by Tivoli Decision
Support for z/OS to read data from input
log data sets, interpret records in the data
set, and store the data in DB2 tables in
the Tivoli Decision Support for z/OS
database.

component
An optionally-installable part of a Tivoli
Decision Support for z/OS
feature.Specifically in Tivoli Decision
Support for z/OS, a component refers to
a logical group of objects used to collect
log data from a specific source, to update
the Tivoli Decision Support for z/OS
database using that data, and to create
reports from data in the database.

control table
A predefined Tivoli Decision Support for
z/OS table that controls results returned
by some log collector functions.

data table
A Tivoli Decision Support for z/OS table
that contains performance data used to
create reports.

environment information
All of the information that is added to the
log data to create reports. This
information can include data such as
performance groups, shift periods,
installation definitions, and so on.

exit anchor
A parameter provided to a log or record
procedure. An exit anchor is used upon
the first call of the procedure to store a
work area location, which is then used in
subsequent calls to that procedure.

grouping value
Value that is used to sort records into
groups.

key columns
The columns of a DB2 table that together
constitute the key.

log collector
A Tivoli Decision Support for z/OS
program that processes log data sets and
provides other Tivoli Decision Support for
z/OS services.

log collector language
Tivoli Decision Support for z/OS
statements used to supply definitions to
and invoke services of the log collector.

log data set
Any sequential data set that is used as
input to Tivoli Decision Support for z/OS.

log definition
The description of a log data set
processed by the log collector.

log procedure
A program module that is used to process
all record types in certain log data sets.

lookup expression
An expression that specifies how a value
is obtained from a lookup table.

E-1



lookup table
A Tivoli Decision Support for z/OS DB2
table that contains grouping, translation,
or substitution information.

nested section
A section of a record that is location
within another section.

Tivoli Decision Support for z/OS database
A set of DB2 tables that includes data
tables, lookup tables, system tables, and
control tables.

purge condition
Instruction for purging old data from the
Tivoli Decision Support for z/OS
database.

record definition
The description of a record type contained
in the log data sets used by Tivoli
Decision Support for z/OS, including
detailed record layout and data formats.

record procedure
A program module that is called to
process some types of log records.

record type
The classification of records in a log data
set.

repeated section
A section of a record that occurs more
than once, with each occurrence adjacent
to the previous one.

report definition language
Tivoli Decision Support for z/OS
statements used to define reports and
report groups.

report group
A collection of Tivoli Decision Support for
z/OS reports that can be referred to by a
single name.

reporting dialog
A set of host or workstation windows
used to request reports.

section
A structure within a record that contains
one or more fields and may contain other
sections.

source In an update definition, the record or DB2
table that contains the data used to
update a Tivoli Decision Support for
z/OS DB2 table.

system table
A DB2 table that stores information that
controls log collector processing, Tivoli
Decision Support for z/OS dialogs, and
reporting.

target In an update definition, the DB2 table in
which Tivoli Decision Support for z/OS
stores data from the source record or
table.

update definition
Instructions for entering data into DB2
tables from records of different types or
from other DB2 tables.

E-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Bibliography

TDS publications
, SH19-6816, SH19-6816
, SH19-4495, SH19-4495
, SH19-4019, SH19-4019
, SH19-6820, SH19-6820
, SH19-4018, SH19-4018
, SH19-6842, SH19-6842
, SH19-6825, SH19-6825
, SH19-6817, SH19-6817
, SH19-6902, SH19-6902
, SH19-6901, SH19-6901
, SH19-6822, SH19-6822
, SH19-6821, SH19-6821
, SH19-6818, SH19-6818
, SH19-6819, SH19-6819
, SH19-4494, SH19-4494
, SC23-7966, SC23-7966

F-1



F-2 Tivoli Decision Support for z/OS: Language Guide and Reference



Index

Special characters
; 8-7
*

FIELD function 5-14
field length 11-17, 11-23
field names 3-1
section occurrences 11-22
specifying in JCL B-1, B-3

% 6-2
& 8-7

A
accessibility xv
accumulation functions

AVG 11-35
COUNT 11-35
FIRST 11-35
LAST 11-35
MAX 11-35
MIN 11-35
PERCENTILE 11-36
SUM 11-35

ADD
FIELDS clause 11-5
SECTION clause 11-5

adding rows in a table 4-9
ALTER

LOG 11-1
RECORD 3-8, 11-3
RECORDPROC 11-6
UPDATE 5-28, 11-7

ampersand 8-7
AND operator 9-12
APPLY SCHEDULE clause

ALTER UPDATE statement 11-8
DEFINE UPDATE statement 11-31

arithmetic operations 9-8
ASM, LANGUAGE 11-17, 11-28, A-4
ASML, LANGUAGE 11-18, 11-28, A-5
assembler, log/record procedure A-3
asterisk

FIELD function 5-14
field length 11-17, 11-23
field names 3-1
section occurrences 11-22
specifying in JCL B-1, B-3

ATTRIBUTES clause 15-5
availability, resource

calculating actual 5-18
comparing actual to scheduled 5-24

averages, determining 5-14
AVG accumulation function 11-35

B
batch

collecting log data in 2-9
generating reports 13-5
sample JCL B-1, B-2

batch (continued)
storing report definition language

statements 13-4
BATCH clause 15-4
blanks 8-4
block comments 8-4
books xiv, xv
books for Administration Guide and

ReferenceAdministration Guide and
Reference F-1

BUFFER SIZE clause
COLLECT statement 11-13
LIST RECORD statement 11-45
using 6-3

BUILT BY clause
ALTER RECORD statement 11-4
DEFINE RECORD statement 11-21

C
C language, log/record procedure A-5
C, LANGUAGE 11-18, 11-29, A-6
cascaded update definitions 4-5
case expressions 9-13
CHAR function 10-1
character

description 8-1
string

constant 14-2
data type 9-2

chart
definition 13-4
sample 13-2

CHART clause 13-4, 15-4
COLLECT statement 11-10
collecting log data

committing changes to DB2 table 6-3
from partially-processed logs 6-4
in batch 2-9
including/excluding tables 6-2
log collector language

statement 11-10
more than once 6-4
online 2-11
overview 1-1

COMMENT ON statement 11-14
comments 8-4, 14-1
COMMIT AFTER clause

COLLECT statement 11-13
using 6-3

concatenation, string 9-10
conditions 9-18
constants 8-2, 14-2
conventions

typeface xvi
COUNT accumulation function 11-35
CURRENT

DATE 9-5
TIME 9-5
TIMESTAMP 9-5

customer support C-2

D
data

accessing
nested sections 5-10
record stems 5-4
repeated sections 5-5
sections, overview 5-10

managing
collecting data 6-1
correcting data in a table 4-9
deleting and adding rows in a

table 4-9
deleting data in a table 4-7

data tables
cascaded updates 4-5
creating 2-3, 4-2
maintaining 1-2
managing data in

correcting data 4-8
deleting and adding rows 4-9
deleting data 4-7
modifying data 4-8

storing data from multiple sources in
single table 4-1

data types
comparisons between 9-10
overview 9-1

date
data type 9-2
incrementing/decrementing 9-9
string 9-6

DATE function 10-1
DATE, CURRENT 9-5
DAY function 10-2
DAYS function 10-3
DAYTYPE function 10-3
DB2 tables

cascaded updates 4-5
managing data in

correcting data 4-8
deleting and adding rows 4-9

naming conventions 8-6
retrieving data from 11-37
rules for storing data in 11-37
storing data

from multiple sources to single
data table 4-1

in multiple data tables 4-4
defaults, using to write record

definitions 3-1
DEFINE

GROUP 13-3, 15-1
LOG

example 2-3
log collector statement 11-15
using HEADER clause 6-4

multiple record types 3-5
nested sections 5-9
PURGE 4-8, 11-18
RECORD 2-3

defaults 3-1

X-1



DEFINE (continued)
RECORD (continued)

example 2-3
RECORDPROC

using A-1
repeated sections 5-3
REPORT 13-3, 15-2
sections 3-3
UPDATE 5-14

DEFINE RECORD
log collector statement 11-19

DEFINE RECORDPROC
log collector statement 11-28

defining
cascaded updates 4-5
logs

example 2-3
log collector statement 11-15
using HEADER clause 6-4

multiple record types 3-5, 3-7
records

defaults 3-1
example 2-3
log collector statement 11-19
multiple record types 3-5
nested sections 5-9
repeated sections 5-3
sections 3-3

updates
for records with repeated

sections 5-3
general discussion 2-4

definition statements, log collector
language 11-28

ALTER LOG 11-1
ALTER RECORD

description 11-3
using 3-8

ALTER RECORDPROC 11-6
ALTER UPDATE 11-7
COMMENT ON 11-14
DEFINE LOG

description 11-15
example 2-3
using HEADER clause 6-4

DEFINE PURGE 11-18
DEFINE RECORD

defaults 3-1
example 2-3
log collector statement 11-19
multiple record types 3-5
nested sections 5-9
repeated sections 5-3
sections 3-3

DEFINE RECORDPROC
using A-1

DEFINE UPDATE 11-29
DROP 3-8, 11-38
GENERATE INDEX 11-39
GENERATE PARTITIONING 11-39
LIST RECORD 11-41
SET 11-53

DELETE
FIELD clause 11-5
FROM clause 11-50
SECTION clause 11-5

deleting data from tables
DEFINE PURGE statement 11-18
deleting rows 4-9
PURGE statement 11-47

delimited word 8-2
delimiter 8-3
DESC clause

DEFINE GROUP statement 15-2
DEFINE REPORT statement 15-3
using 13-3

diagrams, syntax 7-1
DIGITS function 10-5
DISTRIBUTE clause

ALTER UPDATE statement 11-9
DEFINE UPDATE statement 5-17,

11-32
distributing measurements 5-16
documentation

TDS F-1
DRLERDEF exec B-3
DROP 11-38

GROUP 15-5
REPORT 15-6

durations, labeled 9-7

E
education xvi
elements

log collector
blanks 8-4
characters 8-1
comments 8-4
identifiers 8-6
input lines 8-3
processing of 8-5
statements 8-7
table names 8-6
tokens 8-1
variables 8-7

report definition language
character string constant 14-2
comments 14-1
identifiers 14-1
input format 14-1

error handling 9-3
EXCLUDE clause

COLLECT statement 11-11
PURGE statement 11-48
using 6-2

exec, report definition language B-3
expressions

case 9-13
log collector language 9-1
lookup 9-14
overview 9-17

F
field

format
list 11-23
specifying 3-2

length 3-2
name 3-1
offset 3-1

FIELD clause 11-14
FIELD function 10-5
FIELDS clause

DEFINE RECORD statement 11-22
LIST RECORD statement 11-43

FILE clause
DEFINE REPORT statement 15-4
LOGSTAT statement 11-46

FIRST accumulation function 11-35
FIRST RECORD clause

ALTER LOG statement 11-2
DEFINE LOG statement 11-17
using 6-5

fixes, obtaining C-1
FLOAT function 10-6
floating-point

constant 8-3
data type 9-1

FOR clause
ALTER RECORDPROC

statement 11-6
DEFINE RECORDPROC

statement 11-28
FORM clause 15-4
form, QMF 13-2
format

format, field 3-2
input

log collector language 8-3
report definition language 14-1

FORMAT clause 11-44
FROM clause

COLLECT statement 11-10
DEFINE PURGE statement 11-19
DEFINE UPDATE statement 11-30
RECALCULATE statement 11-50

function
accumulation

AVG 11-35
COUNT 11-35
FIRST 11-35
LAST 11-35
MAX 11-35
MIN 11-35
PERCENTILE 11-36
SUM 11-35

CHAR 10-1
DATE 10-1
DAY 10-2
DAYS 10-3
DAYTYPE 10-3
DIGITS 10-5
FIELD 10-5
FLOAT 10-6
GETVAR 10-7
HOUR 10-7
INTEGER 10-8
INTERVAL 10-8
IPCONV 10-9
LENGTH 10-10
MICROSECOND 10-10
MINUTE 10-11
MONTH 10-11
PERIOD 10-12
ROUND 10-14
SECOND 10-15
SECTNUM 10-15

X-2 Tivoli Decision Support for z/OS: Language Guide and Reference



function (continued)
SUBSTR 10-16
TIME 10-17
TIMESTAMP 10-17
TRANSLATE 10-18
VALUE 10-19
WORD 10-20
YEAR 10-20

G
GDDM-ICU format 13-4, 15-4
GENERATE INDEX 11-39
GENERATE PARTITIONING 11-39
GENERATE TABLESPACE

statement 11-40
GETVAR function 10-7
glossary E-1
graphic report

definition 13-4
sample 13-2

GROUP BY clause 2-4
group definitions, writing 13-3
GROUPS clause 15-5

H
HEADER clause

ALTER LOG statement 11-2
DEFINE LOG statement 11-16
using 6-5

HOUR function 10-7

I
IDENTIFIED BY clause

ALTER RECORD statement 11-4
DEFINE RECORD statement 11-21

identifier
log collector language 8-6
report definition language 14-1

IN LOG clause
ALTER RECORD statement 11-4
DEFINE RECORD statement 11-21

INCLUDE clause
COLLECT statement 11-10
PURGE statement 11-47
using 6-2

infix operator 9-8
information centers, searching for

problem resolution C-1
input format

log collector language 8-3
report definition language 14-1

INSERT INTO clause 11-51
integer

constant 8-2
data type 9-1

INTEGER function 10-8
Internet

searching for problem resolution C-1
INTERVAL function 10-8
invalid data 9-2
IPCONV function 10-9
IS clause 11-15

J
JCL

log collector language
executing statements 2-6, 2-7
sample B-1

report definition language
executing DRLERDEF B-3
sample B-2
storing definitions 13-4

K
knowledge bases, searching for problem

resolution C-1

L
labeled durations 9-7
LANGUAGE ASM 11-17, 11-28, A-4
LANGUAGE ASML 11-18, 11-28, A-5
LANGUAGE C 11-18, 11-29, A-6
LANGUAGE clause

in ALTER LOG statement 11-2
in ALTER RECORDPROC

statement 11-6
in DEFINE LOG statement 11-17
in DEFINE RECORDPROC

statement 11-28
LAST accumulation function 11-35
LAST RECORD clause

ALTER LOG statement 11-2
DEFINE LOG statement 11-17
using 6-5

LENGTH function 10-10
length, field 3-2
LET clause

ALTER UPDATE statement 11-9
DEFINE UPDATE statement 11-33

LIKE operator 9-11
line comments 8-4
LIST RECORD 11-41
LISTFILE clause 11-44
LOG clause

COMMENT ON statement 11-14
DROP statement 11-38

log collector
how to use 2-1
introduction 1-1
parameters B-1

log collector language statement
ALTER LOG 11-1
ALTER RECORD

description 11-3
using 3-8

ALTER RECORDPROC 11-6
ALTER UPDATE 11-7
COLLECT 11-10
COMMENT ON 11-14
DEFINE LOG

description 11-15
example 2-3
using HEADER clause 6-4

DEFINE PURGE 11-18
DEFINE RECORD

defaults 3-1
example 2-3

log collector language statement
(continued)

DEFINE RECORDPROC 11-28
using A-1

DEFINE UPDATE 5-14, 11-29
description 11-19
DROP 11-38
GENERATE INDEX 11-39
GENERATE PARTITIONING 11-39
GENERATE TABLESPACE 11-40
LIST RECORD 11-41
LOGSTAT 11-46
multiple record types 3-5
nested sections 5-9
PURGE 11-47
RECALCULATE 11-48
repeated sections 5-3
sections 3-3
SET 11-53

log data
collecting 1-1
collecting from partially-processed

logs 6-4
collecting more that once 6-4
controlling data collection

DEFINE LOG statement 6-4
EXCLUDE clause of COLLECT

statement 6-2
INCLUDE clause of COLLECT

statement 6-2
listing 1-2

log definition
changing 11-1
online storing 2-11
writing 2-3

log procedure
calling A-2
changing 11-2
creating 11-17
interface specifications A-3
parameters A-4, A-5, A-7
using A-1

log processing statements
COLLECT 6-2, 11-10
GENERATE TABLESPACET 11-40
LOGSTAT 11-46

LOGFILE clause 11-44
LOGPROC clause

ALTER LOG statement 11-2
DEFINE LOG statement 11-17
using A-1

LOGSTAT statement 11-46
long identifier 14-1
lookup expressions 9-14

M
manuals xiv, xv

TDS F-1
mathematical operators

overview 9-8
precedence (conditions) 9-19
precedence (expressions) 9-18

MAX accumulation function 11-35
measurements, distributing 5-16
MERGE clause

ALTER UPDATE statement 11-9

Index X-3



MERGE clause (continued)
DEFINE UPDATE statement 11-36

MICROSECOND function 10-10
MIN accumulation function 11-35
MINUTE function 10-11
missing data 9-2
missing or invalid 9-2
MONTH function 10-11
multiple record types, defining 3-7
multiple sources data in single data

tables, storing 4-1

N
name, field 3-1
nested sections within records

accessing data in 5-10
defining a record within 5-9
overview 5-6

NOT operator 9-12
null value

handling 9-2
testing for 9-12

numeric
constants 8-2
data types 9-1

O
offset, field 3-1
ON OVERFLOW clause

COLLECT statement 11-13
LIST RECORD statement 11-45
using 6-3

ON TIMESTAMP OVERLAP SKIP clause,
ON TIMESTAMP OVERLAP SKIP
statement 11-11

ON TIMESTAMP OVERLAP STOP
clause, ON TIMESTAMP OVERLAP
STOP statement 11-12

online
collecting log data, verifying

definitions 2-11
storing report definition language

statements 13-5
verifying record definitions 2-11

online publications
accessing xv

operations
arithmetic 9-8
logical 9-12

operators, mathematical
overview 9-8
precedence (conditions) 9-19
precedence (expressions) 9-18

OR operator 9-12
ORDER BY clause 11-44
OWNER clause

DEFINE GROUP statement 15-1
DEFINE REPORT statement 15-3
DROP GROUP statement 15-6
DROP REPORT statement 15-6

P
PARM clause

ALTER RECORDPROC
statement 11-6

DEFINE RECORDPROC
statement 11-29

partially-processed logs, collecting data
from 6-4

PARTITION clause, COLLECT
statement 11-12

pattern matching 9-11
PERCENTILE accumulation

function 11-36
percentiles, determining 5-15
PERIOD function 10-12
prefix operator 9-8
problem determination

describing problems C-4
determining business impact C-3
submitting problems C-4

procedure
assembler example A-3
C example A-5
log

calling A-2
changing 11-2
creating 11-17
interface specifications A-3
using A-1

record
calling A-2
changing 11-6
interface specifications A-3
using A-1

publications xiv
accessing online xv
TDS F-1

PURGE
FROM clause 11-38
statement 11-47

Q
QMF

query/form, creating 13-2
QUERY clause 15-4
query, QMF 13-2

R
RECALCULATE statement 4-8, 11-48
RECORD clause

COMMENT ON statement 11-14
DROP statement 11-38

record definition
changing 11-3

ALTER RECORD statement 3-8
DROP statement 3-8

defining
example 2-3
nested sections 5-9
repeated sections 5-3
sections 3-3
using defaults 3-1

storing 2-6
verifying 2-8

record procedure
calling A-2
changing 11-6
creating 11-28
interface specifications A-3
parameters A-4, A-5, A-7
using A-1

record types, multiple 3-7
RECORDPROC clause

COMMENT ON statement 11-14
DROP statement 11-38

repeated sections within records
accessing data 5-10
defining records for 5-3
defining updates for

accessing data from sections 5-5
accessing data from the source

records 5-4
general discussion 5-2
how the log collector processes 5-10

report
definition language statements

DEFINE GROUP 15-1
DEFINE REPORT 15-2
DROP GROUP 15-5
DROP REPORT 15-6

definition, writing 13-3
graphic

definition 13-4
sample 13-2

JCL
executing DRLERDEF B-3
sample B-2

tabular
definitions 13-3
sample 13-1

report definition language
elements

character string constants 14-2
input format 14-1

getting started with
general discussion 13-1
QMF forms/queries,

creating 13-2
group definitions, writing 13-3
introduction 12-1
JCL

executing DRLERDEF B-3
sample B-2
storing definitions 13-4

parameters B-1
statements

DEFINE GROUP 15-1
DEFINE REPORT 15-2
DROP GROUP 15-5
DROP REPORT 15-6

storing definition statements
in batch 13-4
online 13-5

REPROCESS clause
COLLECT statement 11-11
using 6-4

resource availability
calculating actual 5-18
comparing actual to scheduled 5-24
general discussion 5-18

ROUND function 10-14

X-4 Tivoli Decision Support for z/OS: Language Guide and Reference



S
SECOND function 10-15
SECTION clause

ALTER RECORD statement 11-5
ALTER UPDATE statement 11-8
DEFINE RECORD statement 11-21
DEFINE UPDATE statement 11-30
LIST RECORD statement 11-43

section occurrence number,
obtaining 5-13

sections within a record
accessing data

general discussion 5-10
obtaining a section occurrence

number 5-13
specific sections 5-14

defining nested 5-6
defining records for 3-3
general discussion 3-3
repeated 5-2

SECTNUM function 10-15
semi-colon 8-7
SET clause

ALTER UPDATE statement 11-9
DEFINE UPDATE statement 11-34
using 2-5

SET statement 11-53
short identifier 14-1
Software Support

contacting C-2
describing problems C-4
determining business impact C-3
receiving weekly updates C-2
submitting problems C-4

specific sections in records,
accessing 5-14

statements
log collector

ALTER LOG 11-1
ALTER RECORD 3-8, 11-3
ALTER RECORDPROC 11-6
ALTER UPDATE 11-7
COLLECT 11-10
COMMENT ON 11-14
DEFINE LOG 6-4, 11-15
DEFINE PURGE 11-18
DEFINE RECORD 11-19
DEFINE RECORDPROC 11-28
DEFINE UPDATE 11-29
GENERATE TABLESPACE 11-40
LIST RECORD 11-41
LOGSTAT 11-46
PURGE 11-47
RECALCULATE 11-48
SET 11-53

report definition language
DEFINE GROUP 15-1
DEFINE REPORT 15-2
DROP GROUP 15-5
DROP REPORT 15-6
general discussion 15-1

statistics, data collection 8-2
storing

data from multiple sources in single
data tables 4-1

data in multiple tables 4-4
definitions on-line 2-11

storing (continued)
definitions, general discussion 2-6
update definitions 2-6

string
concatenation 9-10
constants 14-2
data type 9-2
date/time 9-6
matching with a pattern 9-11

SUBSTR function 10-16
SUM accumulation function 11-35
syntax diagrams, overview 7-1

T
table maintenance statements

PURGE 11-47
RECALCULATE 11-48

tables
cascaded updates 4-5
managing data in

correcting data 4-8
deleting and adding rows 4-9

naming conventions 8-6
retrieving data from 11-37
rules for storing data in 11-37
storing data

from multiple sources to single
data table 4-1

in multiple data tables 4-4
tabular report

definition 13-3
sample 13-1

terms, list of E-1
time

data type 9-2
incrementing/decrementing 9-9
string 9-6

TIME
CURRENT 9-5
function 10-17

TIMESTAMP
clause

ALTER LOG statement 11-2
ALTER UPDATE statement 11-17
DEFINE LOG statement 11-17
DEFINE UPDATE

statement 11-33
using 6-5

CURRENT 9-5
function 10-17
incrementing/decrementing 9-10

timestamp data type 9-2
Tivoli software information center xv
Tivoli technical training xvi
TO clause 11-30
tokens 8-1
training, Tivoli technical xvi
TRANSLATE function 10-18
truth value

applying operators to a 9-12
data type 9-2
unknown 9-3

TYPE clause 15-4
typeface conventions xvi

U
unknown truth value 9-3
UPDATE clause

COMMENT ON statement 11-15
DROP statement 11-38
RECALCULATE statement 11-51

update definitions
averages, determining 5-14
changing

ALTER UPDATE statement 5-28
DROP statement, deleting

with 5-27
creating cascaded 4-5
GROUP BY clauses 2-4
measurement, distributing 5-16
nested sections within records

accessing data in 5-10
defining records with 5-9
general discussion 5-6

percentiles, determining 5-15
repeated sections within records

defining records for 5-3
defining updates for 5-3
general discussion 5-2
how the log collector

processes 5-10
resource availability, determining

calculating actual availability 5-18
comparing actual to

scheduled 5-24
general discussion 5-18

SET clauses 2-5
storing 2-6
writing

records with repeated sections 5-3
storing data in multiple data

tables 4-5
storing multiple source data in

single data tables 4-2
USER keyword 9-5
using

ALTER UPDATE statement 11-9
DEFINE UPDATE statement 11-33
LIST statement 11-43

V
value

comparing a 9-10
null

handling 9-2
testing for 9-12

obtaining a 9-4
specifying a 9-3
truth

applying operators to a 9-12
data type 9-2
unknown 9-3

VALUE function 10-19
variable

obtaining a value from 9-4
overview 8-7
specifying in JCL B-1
stack, C language A-6

VARIABLES clause 15-5

Index X-5



verifying record definitions
general discussion 2-8
online 2-11

VERSION clause
in DEFINE GROUP statement 15-1
in DEFINE LOG statement 11-16
in DEFINE PURGE statement 11-19
in DEFINE RECORD statement 11-28
in DEFINE RECORDPROC

statement 11-20
in DEFINE REPORT statement 15-3
in DEFINE UPDATE statement 11-30

W
WHERE clause

ALTER UPDATE statement 11-8
COLLECT statement 11-10
DEFINE PURGE statement 11-19
DEFINE UPDATE statement 11-30
LIST RECORD statement 11-43

word
definition of 8-1
delimited 8-2

WORD function 10-20

Y
YEAR function 10-20

X-6 Tivoli Decision Support for z/OS: Language Guide and Reference





IBM®

Printed in USA

SH19-6817-13


	Contents
	Figures
	Tables
	Preface
	Who should read this book
	What this book contains
	Publications
	Tivoli Decision Support for z/OS library
	Accessing terminology online
	Accessing publications online

	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this book
	Typeface conventions

	Programming Interfaces Information
	Changes in this edition

	Part 1. Log collector language guide
	Chapter 1. Introduction to the log collector
	Collecting log data
	Listing log data
	Maintaining data tables
	Maintaining definitions
	Ready-made definitions

	Summary of log collector statements

	Chapter 2. How to use the log collector language
	Defining a log
	Defining a record
	Creating a data table
	Defining an update
	Understanding the GROUP BY clause
	Understanding the SET clause

	Performing log collector statements
	Verifying record definitions

	Collecting log data
	Collecting log data in batch
	Collecting log data online


	Chapter 3. Defining logs and records
	Learning more about writing record definitions
	Defining sections within a record
	Defining a record containing a section

	Defining multiple record types
	Defining the records

	Changing log and record definitions
	Using the DROP statement to delete a record definition
	Using the ALTER RECORD statement


	Chapter 4. Updating, storing, and managing data in tables
	Storing data from multiple sources in a single data table
	Creating the data table
	Writing the update definition

	Storing data in multiple data tables
	Defining a cascaded update
	Creating the summary data table
	Defining an update for the summary table


	Managing data within tables
	Deleting data
	Changing data within tables
	Correcting data
	Deleting and adding rows



	Chapter 5. Defining update definitions
	Using repeated sections within records
	Defining a record with a repeated section
	Defining updates for records with repeated sections
	Accessing data from the record stem
	Accessing data from repeated sections


	Using nested sections within records
	Defining a record with nested sections
	Accessing data in nested sections

	Understanding how to access data from records with sections
	Obtaining a section occurrence number
	Accessing specific sections in a record

	Determining averages
	Determining percentiles
	Distributing measurements
	Determining resource availability
	Understanding the MERGE clause
	Comparing actual availability to scheduled availability
	Understanding the APPLY SCHEDULE clause


	Changing and deleting update definitions
	Using the DROP statement to delete an update definition
	Using the ALTER UPDATE statement


	Chapter 6. Collecting log data
	Controlling data collection
	Limiting the collection to certain records
	Including and excluding data tables
	Including or excluding groups of tables

	Controlling when a COMMIT is made
	Controlling buffer size
	Handling table row overflows

	Collecting data more than once
	Collecting data from partially processed logs

	Verifying log data sets during data collection

	Part 2. Log collector language reference
	Chapter 7. How to read the syntax diagrams
	Chapter 8. Elements of the log collector language
	Characters
	Tokens
	Words
	Examples

	Delimited words
	Examples

	String constants
	Examples

	Integer constants
	Examples

	Floating-point constants
	Examples

	Delimiters

	Input lines
	Example

	Blanks
	Comments
	Line comments
	Examples

	Block comments
	Example


	How your text is processed
	Example

	Identifiers
	Table names
	Example

	Statements
	Using variables to modify your text

	Chapter 9. Values and expressions
	Data types
	Integers
	Floating-point numbers
	Character strings
	Dates
	Times
	Timestamps
	Truth values

	Missing and invalid data
	Null value
	Unknown truth value
	Error handling

	Some simple ways of specifying a value
	Specifying a value explicitly
	Specifying a value using an identifier
	Obtaining the value of a variable
	Obtaining the current date and time
	Obtaining the user ID

	Date/time strings
	DATE function
	Automatic conversions

	Labeled durations
	Examples

	Using operators
	Arithmetic operations
	Examples
	Examples

	Incrementing and decrementing date/time values
	Examples

	Concatenation of strings
	Example

	Comparisons
	Examples

	Pattern matching
	Examples
	Examples

	Logical operations

	Testing for null
	Examples

	Case expressions
	Examples

	Lookup expressions
	How the result is obtained
	Which is the most specific pattern
	Example A
	Example B

	Important

	Expressions
	Precedence of operators

	Conditions
	Precedence of operators


	Chapter 10. Functions
	CHAR
	Syntax
	Result
	Example

	DATE
	Syntax
	Result
	Example

	DAY
	Syntax
	Result
	Example

	DAYS
	Syntax
	Result
	Example
	Usage notes

	DAYTYPE
	Syntax
	Result
	Example

	DIGITS
	Syntax
	Result
	Example

	FIELD
	Syntax
	Result
	Example

	FLOAT
	Syntax
	Result
	Example

	GETVAR
	Syntax
	Result
	Example

	HOUR
	Syntax
	Result
	Example

	INTEGER
	Syntax
	Result
	Example

	INTERVAL
	Syntax
	Result
	Example

	IPCONV
	Syntax
	Result
	Example

	LENGTH
	Syntax
	Result
	Example

	MICROSECOND
	Syntax
	Result
	Example

	MINUTE
	Syntax
	Result
	Example

	MONTH
	Syntax
	Result
	Example

	PERIOD
	Syntax
	Result
	Example

	ROUND
	Syntax
	Result
	Example
	Usage notes

	SECOND
	Syntax
	Result
	Example

	SECTNUM
	Syntax
	Result
	Example

	SUBSTR
	Syntax
	Result
	Example

	TIME
	Syntax
	Result
	Example

	TIMESTAMP
	Syntax
	Result
	If only one argument is specified
	If both arguments are specified

	Example

	TRANSLATE
	Syntax
	Result
	Example

	VALUE
	Syntax
	Result
	Example

	WORD
	Syntax
	Result
	Example

	YEAR
	Syntax
	Result
	Example


	Chapter 11. Log collector language statements
	ALTER LOG
	Syntax
	Parameters
	Examples
	Usage

	ALTER RECORD
	Syntax
	Parameters
	Examples
	Usage

	ALTER RECORDPROC
	Syntax
	Parameters
	Examples
	Usage

	ALTER UPDATE
	Syntax
	Parameters
	Examples
	Usage

	COLLECT
	Syntax
	Parameters
	Examples
	Usage

	COMMENT ON
	Syntax
	Parameters
	Examples
	Usage

	DEFINE LOG
	Syntax
	Parameters
	Examples

	DEFINE PURGE
	Syntax
	Parameters
	Examples
	Usage

	DEFINE RECORD
	Syntax
	Parameters
	Examples
	Usage

	DEFINE RECORDPROC
	Syntax
	Parameters
	Examples

	DEFINE UPDATE
	Syntax
	Parameters
	Examples
	APPLY SCHEDULE clause
	DISTRIBUTE clause
	LET clause
	GROUP BY clause
	SET clause
	MERGE clause
	How data is obtained from DB2 tables
	How data is stored in DB2 tables

	DROP
	Syntax
	Parameters
	Examples

	GENERATE INDEX
	Syntax
	Parameters
	Example

	GENERATE PARTITIONING
	Syntax
	Parameters
	Example

	GENERATE TABLESPACE
	Syntax
	Parameters
	Example

	LIST RECORD
	Syntax
	Parameters
	Examples

	LOGSTAT
	Syntax
	Parameters
	Example

	PURGE
	Syntax
	Parameters
	Example
	Usage

	RECALCULATE
	Syntax
	Parameters
	Example
	Usage

	SET
	Syntax
	Parameters
	Examples
	Usage


	Part 3. Report definition language guide
	Chapter 12. Introducing the report definition language
	Chapter 13. Implementing the report definition language
	Getting started with the report definition language
	Creating a QMF query and form

	Writing a group definition
	Writing a report definition
	Writing a definition for a tabular report
	Writing a definition for a graphic report

	Storing report definitions
	Storing definitions in batch

	Generating reports

	Part 4. Report definition language reference
	Chapter 14. Report definition language elements
	Input format
	Identifiers
	Comments

	Character string constants

	Chapter 15. Report definition language statements
	DEFINE GROUP
	DEFINE REPORT
	DROP GROUP
	DROP REPORT

	Part 5. Appendixes
	Appendix A. Log and record procedures
	Specifying log and record procedures
	Calling log and record procedures
	Calling assembler procedures
	Using LANGUAGE ASM interface
	Using LANGUAGE ASML interface

	Calling C procedures
	Using LANGUAGE C interface

	Example log procedures
	Example C log procedure
	Example Assembler log procedure


	Appendix B. JCL for the log collector language and report definition language
	JCL for the log collector language
	JCL for the report definition language
	Reporting definition language exec


	Appendix C. Support information
	Searching knowledge bases
	Searching the information center
	Searching the Internet

	Obtaining fixes
	Receiving weekly support updates
	Contacting IBM Software Support
	Determining the business impact
	Describing problems and gathering information
	Submitting problems


	Notices
	Trademarks

	Glossary
	Bibliography
	TDS publications

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y


